我有以下数据框df
:
time_diff avg_trips_per_day
631 1.0
231 1.0
431 1.0
7031 1.0
17231 1.0
20000 20.0
21000 15.0
22000 10.0
我想创建一个直方图,其中X轴为time_diff
,Y轴为avg_trips_per_day
,以便查看time_diff
值的分布。因此,Y轴不是df
中X值重复的频率,但它应该是avg_trips_per_day
。
问题是我不知道如何将time_diff
放入箱中以便将其作为连续变量处理。
这是我尝试的,但它将time_diff
的所有可能值都放在X轴上。
norm = plt.Normalize(df["avg_trips_per_day"].values.min(), df["avg_trips_per_day"].values.max())
colors = plt.cm.spring(norm(df["avg_trips_per_day"]))
plt.figure(figsize=(12,8))
ax = sns.barplot(x="time_diff", y="avg_trips_per_day", data=df, palette=colors)
plt.xticks(rotation='vertical', fontsize=12)
ax.grid(b=True, which='major', color='#d3d3d3', linewidth=1.0)
ax.grid(b=True, which='minor', color='#d3d3d3', linewidth=0.5)
plt.show()
答案 0 :(得分:4)
import pandas as pd
import seaborn as sns
from io import StringIO
data = pd.read_table(StringIO("""time_diff avg_trips_per_day
631 1.0
231 1.0
431 1.0
7031 1.0
17231 1.0
20000 20.0
21000 15.0
22000 10.0"""), delim_whitespace=True)
data['timegroup'] = pd.qcut(data['time_diff'], 3)
sns.barplot(x='timegroup', y='avg_trips_per_day', data=data)
这是你想要的吗?
答案 1 :(得分:2)
正如您自己解释的那样,您不需要直方图,而是简单的条形图。但是根据我的理解,你想要将time_diff
用于绘图。
以下内容可帮助您对数据进行分级和分组:
import pandas a pd
n_bins = 10
# bins indexed if want to use for x axis
x_bins = np.arange(n_bins)
# create bins
_, bins = pd.cut(df['time_diff'], bins=n_bins, retbins=True, right=False)
# regroup your data by computed bins indexes
binned_data = df['time_diff'].groupby(np.digitize(df['time_diff'], bins)).mean()