对于与this question相关的代码,我需要尽快计算以下内容:
给定32位整数 i ,计算 n 次最低有效位设置位的位置。 n 和结果都应为0索引。
例如,假设数字 i = 11010110101 2 且 n = 4,则所需数字为7,因为第四个设置位为位置7:110 1 0110101。
使用来自x86的BMI2指令集扩展的pdep
指令和常用的__builtin_ctz()
内在函数,可以很容易地计算出来:
j = _pdep_u32(1 << n, i);
return (__builtin_ctz(j));
但是,许多计算机没有pdep
指令,这种方法略显不切实际。你也可以像pdep
一样计算这样的位位置:
j = i;
for (k = 0; k < n; k++)
j &= j - 1;
return (__builtin_ctz(j));
但是,这很慢。
我定位的计算机至少提供__builtin_popcount()
和__builtin_ctz()
。如何更快地找到这样的位位置?
答案 0 :(得分:2)
适用于此案例的bit-twiddling hacks版本是,例如
unsigned int nth_bit_set(uint32_t value, unsigned int n)
{
const uint32_t pop2 = (value & 0x55555555u) + ((value >> 1) & 0x55555555u);
const uint32_t pop4 = (pop2 & 0x33333333u) + ((pop2 >> 2) & 0x33333333u);
const uint32_t pop8 = (pop4 & 0x0f0f0f0fu) + ((pop4 >> 4) & 0x0f0f0f0fu);
const uint32_t pop16 = (pop8 & 0x00ff00ffu) + ((pop8 >> 8) & 0x00ff00ffu);
const uint32_t pop32 = (pop16 & 0x000000ffu) + ((pop16 >>16) & 0x000000ffu);
unsigned int rank = 0;
unsigned int temp;
if (n++ >= pop32)
return 32;
temp = pop16 & 0xffu;
/* if (n > temp) { n -= temp; rank += 16; } */
rank += ((temp - n) & 256) >> 4;
n -= temp & ((temp - n) >> 8);
temp = (pop8 >> rank) & 0xffu;
/* if (n > temp) { n -= temp; rank += 8; } */
rank += ((temp - n) & 256) >> 5;
n -= temp & ((temp - n) >> 8);
temp = (pop4 >> rank) & 0x0fu;
/* if (n > temp) { n -= temp; rank += 4; } */
rank += ((temp - n) & 256) >> 6;
n -= temp & ((temp - n) >> 8);
temp = (pop2 >> rank) & 0x03u;
/* if (n > temp) { n -= temp; rank += 2; } */
rank += ((temp - n) & 256) >> 7;
n -= temp & ((temp - n) >> 8);
temp = (value >> rank) & 0x01u;
/* if (n > temp) rank += 1; */
rank += ((temp - n) & 256) >> 8;
return rank;
}
,当在单独的编译单元中编译时,使用英特尔酷睿i5-4200u上的-Wall -O3 -march=native -mtune=native
在gcc-5.4.0上,产生
00400a40 <nth_bit_set>:
400a40: 89 f9 mov %edi,%ecx
400a42: 89 f8 mov %edi,%eax
400a44: 55 push %rbp
400a45: 40 0f b6 f6 movzbl %sil,%esi
400a49: d1 e9 shr %ecx
400a4b: 25 55 55 55 55 and $0x55555555,%eax
400a50: 53 push %rbx
400a51: 81 e1 55 55 55 55 and $0x55555555,%ecx
400a57: 01 c1 add %eax,%ecx
400a59: 41 89 c8 mov %ecx,%r8d
400a5c: 89 c8 mov %ecx,%eax
400a5e: 41 c1 e8 02 shr $0x2,%r8d
400a62: 25 33 33 33 33 and $0x33333333,%eax
400a67: 41 81 e0 33 33 33 33 and $0x33333333,%r8d
400a6e: 41 01 c0 add %eax,%r8d
400a71: 45 89 c1 mov %r8d,%r9d
400a74: 44 89 c0 mov %r8d,%eax
400a77: 41 c1 e9 04 shr $0x4,%r9d
400a7b: 25 0f 0f 0f 0f and $0xf0f0f0f,%eax
400a80: 41 81 e1 0f 0f 0f 0f and $0xf0f0f0f,%r9d
400a87: 41 01 c1 add %eax,%r9d
400a8a: 44 89 c8 mov %r9d,%eax
400a8d: 44 89 ca mov %r9d,%edx
400a90: c1 e8 08 shr $0x8,%eax
400a93: 81 e2 ff 00 ff 00 and $0xff00ff,%edx
400a99: 25 ff 00 ff 00 and $0xff00ff,%eax
400a9e: 01 d0 add %edx,%eax
400aa0: 0f b6 d8 movzbl %al,%ebx
400aa3: c1 e8 10 shr $0x10,%eax
400aa6: 0f b6 d0 movzbl %al,%edx
400aa9: b8 20 00 00 00 mov $0x20,%eax
400aae: 01 da add %ebx,%edx
400ab0: 39 f2 cmp %esi,%edx
400ab2: 77 0c ja 400ac0 <nth_bit_set+0x80>
400ab4: 5b pop %rbx
400ab5: 5d pop %rbp
400ab6: c3 retq
400ac0: 83 c6 01 add $0x1,%esi
400ac3: 89 dd mov %ebx,%ebp
400ac5: 29 f5 sub %esi,%ebp
400ac7: 41 89 ea mov %ebp,%r10d
400aca: c1 ed 08 shr $0x8,%ebp
400acd: 41 81 e2 00 01 00 00 and $0x100,%r10d
400ad4: 21 eb and %ebp,%ebx
400ad6: 41 c1 ea 04 shr $0x4,%r10d
400ada: 29 de sub %ebx,%esi
400adc: c4 42 2b f7 c9 shrx %r10d,%r9d,%r9d
400ae1: 41 0f b6 d9 movzbl %r9b,%ebx
400ae5: 89 dd mov %ebx,%ebp
400ae7: 29 f5 sub %esi,%ebp
400ae9: 41 89 e9 mov %ebp,%r9d
400aec: 41 81 e1 00 01 00 00 and $0x100,%r9d
400af3: 41 c1 e9 05 shr $0x5,%r9d
400af7: 47 8d 14 11 lea (%r9,%r10,1),%r10d
400afb: 41 89 e9 mov %ebp,%r9d
400afe: 41 c1 e9 08 shr $0x8,%r9d
400b02: c4 42 2b f7 c0 shrx %r10d,%r8d,%r8d
400b07: 41 83 e0 0f and $0xf,%r8d
400b0b: 44 21 cb and %r9d,%ebx
400b0e: 45 89 c3 mov %r8d,%r11d
400b11: 29 de sub %ebx,%esi
400b13: 5b pop %rbx
400b14: 41 29 f3 sub %esi,%r11d
400b17: 5d pop %rbp
400b18: 44 89 da mov %r11d,%edx
400b1b: 41 c1 eb 08 shr $0x8,%r11d
400b1f: 81 e2 00 01 00 00 and $0x100,%edx
400b25: 45 21 d8 and %r11d,%r8d
400b28: c1 ea 06 shr $0x6,%edx
400b2b: 44 29 c6 sub %r8d,%esi
400b2e: 46 8d 0c 12 lea (%rdx,%r10,1),%r9d
400b32: c4 e2 33 f7 c9 shrx %r9d,%ecx,%ecx
400b37: 83 e1 03 and $0x3,%ecx
400b3a: 41 89 c8 mov %ecx,%r8d
400b3d: 41 29 f0 sub %esi,%r8d
400b40: 44 89 c0 mov %r8d,%eax
400b43: 41 c1 e8 08 shr $0x8,%r8d
400b47: 25 00 01 00 00 and $0x100,%eax
400b4c: 44 21 c1 and %r8d,%ecx
400b4f: c1 e8 07 shr $0x7,%eax
400b52: 29 ce sub %ecx,%esi
400b54: 42 8d 14 08 lea (%rax,%r9,1),%edx
400b58: c4 e2 6b f7 c7 shrx %edx,%edi,%eax
400b5d: 83 e0 01 and $0x1,%eax
400b60: 29 f0 sub %esi,%eax
400b62: 25 00 01 00 00 and $0x100,%eax
400b67: c1 e8 08 shr $0x8,%eax
400b6a: 01 d0 add %edx,%eax
400b6c: c3 retq
当编译为单独的编译单元时,这台机器上的定时很困难,因为实际操作与调用do-nothing函数一样快(也在单独的编译单元中编译);实际上,计算是在与函数调用相关的延迟期间完成的。
它似乎比我建议的二元搜索稍快,
unsigned int nth_bit_set(uint32_t value, unsigned int n)
{
uint32_t mask = 0x0000FFFFu;
unsigned int size = 16u;
unsigned int base = 0u;
if (n++ >= __builtin_popcount(value))
return 32;
while (size > 0) {
const unsigned int count = __builtin_popcount(value & mask);
if (n > count) {
base += size;
size >>= 1;
mask |= mask << size;
} else {
size >>= 1;
mask >>= size;
}
}
return base;
}
循环执行五次,编译为
00400ba0 <nth_bit_set>:
400ba0: 83 c6 01 add $0x1,%esi
400ba3: 31 c0 xor %eax,%eax
400ba5: b9 10 00 00 00 mov $0x10,%ecx
400baa: ba ff ff 00 00 mov $0xffff,%edx
400baf: 45 31 db xor %r11d,%r11d
400bb2: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)
400bb8: 41 89 c9 mov %ecx,%r9d
400bbb: 41 89 f8 mov %edi,%r8d
400bbe: 41 d0 e9 shr %r9b
400bc1: 41 21 d0 and %edx,%r8d
400bc4: c4 62 31 f7 d2 shlx %r9d,%edx,%r10d
400bc9: f3 45 0f b8 c0 popcnt %r8d,%r8d
400bce: 41 09 d2 or %edx,%r10d
400bd1: 44 38 c6 cmp %r8b,%sil
400bd4: 41 0f 46 cb cmovbe %r11d,%ecx
400bd8: c4 e2 33 f7 d2 shrx %r9d,%edx,%edx
400bdd: 41 0f 47 d2 cmova %r10d,%edx
400be1: 01 c8 add %ecx,%eax
400be3: 44 89 c9 mov %r9d,%ecx
400be6: 45 84 c9 test %r9b,%r9b
400be9: 75 cd jne 400bb8 <nth_bit_set+0x18>
400beb: c3 retq
,在95%的二进制搜索版本调用中不超过31个周期,而在95%的bit-hack版本调用中不超过28个周期;在50%的病例中,两者均在28个周期内运行。 (循环版本在95%的呼叫中最多需要56个周期,中位数最多为37个周期。)
要确定哪一个在实际的真实世界代码中更好,就必须在现实世界的任务中做一个适当的基准测试;至少在当前的x86-64架构处理器中,完成的工作很容易隐藏在其他地方(如函数调用)的延迟中。
答案 1 :(得分:1)
修改强>
在考虑并使用__builtin_popcount
函数后,我认为最好决定相关字节,然后计算整个结果,而不是逐步增加/减去数字。这是一个更新版本:
int GetBitAtPosition(unsigned i, unsigned n)
{
unsigned bitCount;
bitCount = __builtin_popcount(i & 0x00ffffff);
if (bitCount <= n)
{
return (24 + LUT_BitPosition[i >> 24][n - bitCount]);
}
bitCount = __builtin_popcount(i & 0x0000ffff);
if (bitCount <= n)
{
return (16 + LUT_BitPosition[(i >> 16) & 0xff][n - bitCount]);
}
bitCount = __builtin_popcount(i & 0x000000ff);
if (bitCount <= n)
{
return (8 + LUT_BitPosition[(i >> 8) & 0xff][n - bitCount]);
}
return LUT_BitPosition[i & 0xff][n];
}
我觉得要创建一个基于LUT的解决方案,其中数字以字节块的形式进行检查,但是,第n位的LUT变得非常大(256 * 8),并且在下面讨论了LUT-free版本评论可能会更好。
通常算法看起来像这样:
unsigned i = 0x000006B5;
unsigned n = 4;
unsigned result = 0;
unsigned bitCount;
while (i)
{
bitCount = LUT_BitCount[i & 0xff];
if (n < bitCount)
{
result += LUT_BitPosition[i & 0xff][n];
break; // found
}
else
{
n -= bitCount;
result += 8;
i >>= 8;
}
}
可能值得将循环展开到最多4次迭代,以获得32位数的最佳性能。
bitcount的LUT(可以用__builtin_popcount
代替):
unsigned LUT_BitCount[] = {
0, 1, 1, 2, 1, 2, 2, 3, // 0-7
1, 2, 2, 3, 2, 3, 3, 4, // 8-15
1, 2, 2, 3, 2, 3, 3, 4, // 16-23
2, 3, 3, 4, 3, 4, 4, 5, // 24-31
1, 2, 2, 3, 2, 3, 3, 4, // 32-39
2, 3, 3, 4, 3, 4, 4, 5, // 40-47
2, 3, 3, 4, 3, 4, 4, 5, // 48-55
3, 4, 4, 5, 4, 5, 5, 6, // 56-63
1, 2, 2, 3, 2, 3, 3, 4, // 64-71
2, 3, 3, 4, 3, 4, 4, 5, // 72-79
2, 3, 3, 4, 3, 4, 4, 5, // 80-87
3, 4, 4, 5, 4, 5, 5, 6, // 88-95
2, 3, 3, 4, 3, 4, 4, 5, // 96-103
3, 4, 4, 5, 4, 5, 5, 6, // 104-111
3, 4, 4, 5, 4, 5, 5, 6, // 112-119
4, 5, 5, 6, 5, 6, 6, 7, // 120-127
1, 2, 2, 3, 2, 3, 3, 4, // 128
2, 3, 3, 4, 3, 4, 4, 5, // 136
2, 3, 3, 4, 3, 4, 4, 5, // 144
3, 4, 4, 5, 4, 5, 5, 6, // 152
2, 3, 3, 4, 3, 4, 4, 5, // 160
3, 4, 4, 5, 4, 5, 5, 6, // 168
3, 4, 4, 5, 4, 5, 5, 6, // 176
4, 5, 5, 6, 5, 6, 6, 7, // 184
2, 3, 3, 4, 3, 4, 4, 5, // 192
3, 4, 4, 5, 4, 5, 5, 6, // 200
3, 4, 4, 5, 4, 5, 5, 6, // 208
4, 5, 5, 6, 5, 6, 6, 7, // 216
3, 4, 4, 5, 4, 5, 5, 6, // 224
4, 5, 5, 6, 5, 6, 6, 7, // 232
4, 5, 5, 6, 5, 6, 6, 7, // 240
5, 6, 6, 7, 6, 7, 7, 8, // 248-255
};
字节内位位置的LUT:
unsigned LUT_BitPosition[][8] = {
// 0-7
{UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
// 8-15
{3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
// 16-31
{4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,4,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,4,UINT_MAX,UINT_MAX,UINT_MAX},
// 32-63
{5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,5,UINT_MAX,UINT_MAX,UINT_MAX},
{4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,5,UINT_MAX,UINT_MAX,UINT_MAX},
{3,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,4,5,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,4,5,UINT_MAX,UINT_MAX},
// 64-127
{6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,6,UINT_MAX,UINT_MAX,UINT_MAX},
{4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,6,UINT_MAX,UINT_MAX,UINT_MAX},
{3,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,4,6,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,4,6,UINT_MAX,UINT_MAX},
{5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{3,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,5,6,UINT_MAX,UINT_MAX},
{4,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,5,6,UINT_MAX,UINT_MAX},
{3,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,5,6,UINT_MAX,UINT_MAX},
{2,3,4,5,6,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,5,6,UINT_MAX,UINT_MAX},
{1,2,3,4,5,6,UINT_MAX,UINT_MAX},
{0,1,2,3,4,5,6,UINT_MAX},
// 128-255
{7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,7,UINT_MAX,UINT_MAX,UINT_MAX},
{4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,7,UINT_MAX,UINT_MAX,UINT_MAX},
{3,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,4,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,4,7,UINT_MAX,UINT_MAX},
{5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{3,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,5,7,UINT_MAX,UINT_MAX},
{4,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,5,7,UINT_MAX,UINT_MAX},
{3,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,5,7,UINT_MAX,UINT_MAX},
{2,3,4,5,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,5,7,UINT_MAX,UINT_MAX},
{1,2,3,4,5,7,UINT_MAX,UINT_MAX},
{0,1,2,3,4,5,7,UINT_MAX},
{6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{2,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{3,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,3,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,3,6,7,UINT_MAX,UINT_MAX},
{4,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,4,6,7,UINT_MAX,UINT_MAX},
{3,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,4,6,7,UINT_MAX,UINT_MAX},
{2,3,4,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,4,6,7,UINT_MAX,UINT_MAX},
{1,2,3,4,6,7,UINT_MAX,UINT_MAX},
{0,1,2,3,4,6,7,UINT_MAX},
{5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{1,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{2,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,2,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,2,5,6,7,UINT_MAX,UINT_MAX},
{3,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,3,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,3,5,6,7,UINT_MAX,UINT_MAX},
{2,3,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,3,5,6,7,UINT_MAX,UINT_MAX},
{1,2,3,5,6,7,UINT_MAX,UINT_MAX},
{0,1,2,3,5,6,7,UINT_MAX},
{4,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX},
{0,4,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{1,4,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,1,4,5,6,7,UINT_MAX,UINT_MAX},
{2,4,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,2,4,5,6,7,UINT_MAX,UINT_MAX},
{1,2,4,5,6,7,UINT_MAX,UINT_MAX},
{0,1,2,4,5,6,7,UINT_MAX},
{3,4,5,6,7,UINT_MAX,UINT_MAX,UINT_MAX},
{0,3,4,5,6,7,UINT_MAX,UINT_MAX},
{1,3,4,5,6,7,UINT_MAX,UINT_MAX},
{0,1,3,4,5,6,7,UINT_MAX},
{2,3,4,5,6,7,UINT_MAX,UINT_MAX},
{0,2,3,4,5,6,7,UINT_MAX},
{1,2,3,4,5,6,7,UINT_MAX},
{0,1,2,3,4,5,6,7},
};
答案 2 :(得分:1)
我的回答主要基于64位字选择方法的this implementation(提示:仅查看MARISA_USE_POPCNT,MARISA_X64,MARISA_USE_SSE3代码路径):
它分两步工作,首先选择包含第n个设置位的字节,然后在字节内使用查找表:
n
传播到所有字节(SSE广播或再次乘以0x01010101 ......)n
的每个字节中留下0xFF)现在我们知道哪个字节包含该位和一个简单的字节查找表,就像grek40的回答足以得到结果。
但是请注意,我没有真正将此结果与其他实现进行基准测试,只是我认为它非常有效(并且无分支)
答案 3 :(得分:1)
我的方法是并行计算32位整数的每个8位四分之一的population count,然后找出哪个四分之一包含第n位。低于找到的季度的人口数可以概括为稍后计算的初始值。
在该计数之后逐位设置位,直到达到n
。如果没有分支并使用population count algorithm的不完整实现,我的示例如下:
#include <stdio.h>
#include <stdint.h>
int main() {
uint32_t n = 10, test = 3124375902u; /* 10111010001110100011000101011110 */
uint32_t index, popcnt, quarter = 0, q_popcnt;
/* count set bits of each quarter of 32-bit integer in parallel */
q_popcnt = test - ((test >> 1) & 0x55555555);
q_popcnt = (q_popcnt & 0x33333333) + ((q_popcnt >> 2) & 0x33333333);
q_popcnt = (q_popcnt + (q_popcnt >> 4)) & 0x0F0F0F0F;
popcnt = q_popcnt;
/* find which quarters can be summarized and summarize them */
quarter += (n + 1 >= (q_popcnt & 0xff));
quarter += (n + 1 >= ((q_popcnt += q_popcnt >> 8) & 0xff));
quarter += (n + 1 >= ((q_popcnt += q_popcnt >> 16) & 0xff));
quarter += (n + 1 >= ((q_popcnt += q_popcnt >> 24) & 0xff));
popcnt &= (UINT32_MAX >> (8 * quarter));
popcnt = (popcnt * 0x01010101) >> 24;
/* find the index of nth bit in quarter where it should be */
index = 8 * quarter;
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
index += ((popcnt += (test >> index) & 1) <= n);
printf("index = %u\n", index);
return 0;
}
使用循环和条件的简单方法也可以是:
#include <stdio.h>
#include <stdint.h>
int main() {
uint32_t n = 11, test = 3124375902u; /* 10111010001110100011000101011110 */
uint32_t popcnt = 0, index = 0;
while(popcnt += ((test >> index) & 1), popcnt <= n && ++index < 32);
printf("index = %u\n", index);
return 0;
}
答案 4 :(得分:0)
根据JuhaJärvi在着名Bit Twiddling Hacks中发布的方法,我测试了这个实现,其中CLEAR: ekpo-ebeln ,ekpo-ebelp
和n
用于问题:
i
基于我自己的测试,这与x86上的循环速度一样快,而arm64上的速度快20%,并且由于快速的条件指令可能会快得多,但是我无法测试这个现在