ggplot2:如何自定义颜色和形状的点数?

时间:2017-08-02 20:25:43

标签: r ggplot2

我正在尝试使用ggplot2创建条带图。以下是tbl的子集,其中包含我正在使用的相关列以及dput

> tbl[,c('Study_ID', 'Probe_ID', 'Group1','Group2','LogFC', 'adj_P_Value', 'P_Value', 'CI_L','CI_R','Disease')]
   Study_ID  Probe_ID               Group1                   Group2       LogFC  adj_P_Value      P_Value        CI_L        CI_R
1   GSE2461 220307_at                 Male                   Female -0.09017596 1.000000e+00 5.662047e-01 -0.43955752  0.25920561
2   GSE2461 220307_at   ulcerative colitis irritable bowel syndrome  0.08704844 1.000000e+00 5.784053e-01 -0.26134341  0.43544028
3  GSE27887 220307_at     nonlesional skin            lesional skin -0.03501474 1.000000e+00 4.409881e-01 -0.12677636  0.05674688
4  GSE27887 220307_at         pretreatment            posttreatment  0.01096914 1.000000e+00 8.080366e-01 -0.08064105  0.10257932
5  GSE42296   7921677           Infliximab         Before treatment -0.03707265 1.000000e+00 3.979403e-01 -0.12407201  0.04992672
6  GSE42296   7921677            Responder             Nonresponder  0.07644834 1.000000e+00 1.505444e-01 -0.02849309  0.18138977
7  GSE42296   7921677 Rheumatoid Arthritis          Crohn's Disease  0.42318863 3.960125e-06 1.989713e-10  0.31076269  0.53561457
8  GSE58558 220307_at                    M                        F -0.11881801 1.000000e+00 1.130180e-01 -0.26629675  0.02866072
9  GSE58558 220307_at    non lesional skin            lesional skin -0.18914128 1.000000e+00 3.696739e-03 -0.31525660 -0.06302596
10 GSE58558 220307_at            responder             nonresponder -0.14470319 1.000000e+00 2.328062e-01 -0.38396386  0.09455748
11 GSE58558 220307_at              week 12                    day 1 -0.39619004 4.311942e-01 2.215798e-05 -0.57226227 -0.22011781
12 GSE58558 220307_at               week 2                    day 1 -0.28765455 1.000000e+00 8.753977e-04 -0.45375957 -0.12154953
13 GSE59294 220307_at   C Dupilumab 300 mg       B Dupilumab 150 mg  0.16853309 1.000000e+00 1.140155e-01 -0.04273877  0.37980494
14 GSE59294 220307_at            D Placebo       B Dupilumab 150 mg -0.18995566 1.000000e+00 2.264691e-01 -0.50367856  0.12376724
15 GSE59294 220307_at              NL skin                  LS skin  0.01376129 1.000000e+00 9.041383e-01 -0.21711706  0.24463964
16 GSE59294 220307_at                  Pre                     Post  0.02234607 1.000000e+00 8.069367e-01 -0.16235054  0.20704268
                                        Disease
1  irritable bowel syndrome; ulcerative colitis
2  irritable bowel syndrome; ulcerative colitis
3                             atopic Dermatitis
4                             atopic Dermatitis
5         Crohn's Disease; Rheumatoid Arthritis
6         Crohn's Disease; Rheumatoid Arthritis
7         Crohn's Disease; Rheumatoid Arthritis
8                             Atopic Dermatitis
9                             Atopic Dermatitis
10                            Atopic Dermatitis
11                            Atopic Dermatitis
12                            Atopic Dermatitis
13                            atopic Dermatitis
14                            atopic Dermatitis
15                            atopic Dermatitis
16                            atopic Dermatitis

以下是dput

> dput(droplevels(tbl[,c('Study_ID', 'Probe_ID', 'Group1','Group2','LogFC', 'adj_P_Value', 'P_Value', 'CI_L','CI_R','Disease')]))
structure(list(Study_ID = c("GSE2461", "GSE2461", "GSE27887", 
"GSE27887", "GSE42296", "GSE42296", "GSE42296", "GSE58558", "GSE58558", 
"GSE58558", "GSE58558", "GSE58558", "GSE59294", "GSE59294", "GSE59294", 
"GSE59294"), Probe_ID = c("220307_at", "220307_at", "220307_at", 
"220307_at", "7921677", "7921677", "7921677", "220307_at", "220307_at", 
"220307_at", "220307_at", "220307_at", "220307_at", "220307_at", 
"220307_at", "220307_at"), Group1 = c("Male", "ulcerative colitis", 
"nonlesional skin", "pretreatment", "Infliximab", "Responder", 
"Rheumatoid Arthritis", "M", "non lesional skin", "responder", 
"week 12", "week 2", "C Dupilumab 300 mg", "D Placebo", "NL skin", 
"Pre"), Group2 = c("Female", "irritable bowel syndrome", "lesional skin", 
"posttreatment", "Before treatment", "Nonresponder", "Crohn's Disease", 
"F", "lesional skin", "nonresponder", "day 1", "day 1", "B Dupilumab 150 mg", 
"B Dupilumab 150 mg", "LS skin", "Post"), LogFC = c(-0.0901759558643281, 
0.0870484364429408, -0.0350147376937934, 0.0109691380052655, 
-0.0370726462749328, 0.0764483363743359, 0.423188628619509, -0.118818013184408, 
-0.189141277685995, -0.144703191279992, -0.396190039768736, -0.28765454670704, 
0.168533085440721, -0.189955660434197, 0.0137612879743023, 0.0223460675171673
), adj_P_Value = c(1, 1, 1, 1, 1, 1, 3.96012504622782e-06, 1, 
1, 1, 0.431194244819507, 1, 1, 1, 1, 1), P_Value = c(0.566204678925109, 
0.578405275354266, 0.440988072013756, 0.808036622723435, 0.397940346528484, 
0.150544373610059, 1.98971262936634e-10, 0.11301796668591, 0.00369673863311212, 
0.232806229179741, 2.21579776371792e-05, 0.000875397680320129, 
0.114015475901252, 0.226469133014055, 0.904138332714553, 0.806936684043586
), CI_L = c(-0.439557521861354, -0.261343410788222, -0.12677635951562, 
-0.0806410486876688, -0.124072011981945, -0.0284930943795223, 
0.310762687356251, -0.26629674914578, -0.315256597358499, -0.383963864121397, 
-0.57226227039893, -0.453759565458485, -0.0427387734415052, -0.503678563834605, 
-0.217117064412363, -0.162350541147386), CI_R = c(0.259205610132698, 
0.435440283674103, 0.0567468841280329, 0.1025793246982, 0.0499267194320791, 
0.181389767128194, 0.535614569882768, 0.0286607227769647, -0.0630259580134921, 
0.0945574815614131, -0.220117809138542, -0.121549527955595, 0.379804944322947, 
0.12376724296621, 0.244639640360967, 0.207042676181721), Disease = c("irritable bowel syndrome; ulcerative colitis", 
"irritable bowel syndrome; ulcerative colitis", "atopic Dermatitis", 
"atopic Dermatitis", "Crohn's Disease; Rheumatoid Arthritis", 
"Crohn's Disease; Rheumatoid Arthritis", "Crohn's Disease; Rheumatoid Arthritis", 
"Atopic Dermatitis", "Atopic Dermatitis", "Atopic Dermatitis", 
"Atopic Dermatitis", "Atopic Dermatitis", "atopic Dermatitis", 
"atopic Dermatitis", "atopic Dermatitis", "atopic Dermatitis"
)), .Names = c("Study_ID", "Probe_ID", "Group1", "Group2", "LogFC", 
"adj_P_Value", "P_Value", "CI_L", "CI_R", "Disease"), row.names = c(NA, 
-16L), class = "data.frame")

最后,这是我到目前为止的代码。

#test using ggplot2
maxFC = max(as.numeric(as.character(tbl$LogFC)))
minFC = min(as.numeric(as.character(tbl$LogFC)))


datasetList = tbl$Study_ID
hLines =(which(duplicated(datasetList) == FALSE) - 0.5)


tbl$ylab <- paste(tbl$Group2," \U2192 ","\n", tbl$Group1, sep = "")


p <- ggplot(data = tbl, aes(x = LogFC, y = Probe_ID, group = Study_ID)) +
  geom_vline(xintercept = log(0.5,2), size = 0.2) +
  geom_vline(xintercept = log(2/3,2), size = 0.2) +
  geom_vline(xintercept = log(1.5,2), size = 0.2) +
  geom_vline(xintercept = log(2,2), size = 0.2) +
  labs(title = tbl$gene, y = "Contrasts", x = bquote(~Log[2]~'(Fold Change)')) +
  geom_errorbarh(aes(x = LogFC, xmin =  CI_L, xmax = CI_R), height = .1) +
  geom_point(aes(colour = cut(adj_P_Value, c(-Inf, 0.01, 0.05, Inf)))) +
  scale_color_manual(name = "P Value",
                     values = c("(-Inf,0.01]" = "red",
                                "(0.01,0.05)" = "orange",
                                "(0.05, Inf]" = "black"),
                     labels = c("<= 0.01", "0.01 < P Value <= 0.05", "> 0.05")) +
  scale_shape_manual(values = c( 4,15,19)) +
  coord_cartesian(xlim = c(min(-2,minFC),max(2,maxFC))) +

  theme(axis.text.y = element_blank(), strip.text.y = element_text(angle = 180),
        #panel.grid.major = element_blank(),
        #panel.grid.minor = element_blank(),
        axis.line.y = element_blank(),
        axis.line.x = element_blank(),
        #panel.background = element_rect(fill = 'white', colour = 'white'),
        #panel.grid = element_blank(),
        panel.spacing.y = unit(0.5,'lines'),
        axis.ticks.y = element_blank()) +
  facet_grid(Study_ID+ylab~ ., scales = 'free', space = 'free', switch = 'both')


p

基本上,积分实际位置是通过LogFC值确定的,但是adj_P_Value <= 0.01的点应显示为红色圆圈,在0.01到0.05之间显示为橙色方块,{{{ 1}}作为黑色十字架(即我提供的数据不应该显示任何方块)。我的尝试是在>= 0.05中使用cut,但这似乎不起作用。颜色显示正确,但形状不正确。这一直困扰着我。如果我违反了任何惯例或标准(我可能会这样做),请让我知道并提出一些可以实现我已经完成的事情。谢谢!

更新

geom_point

1 个答案:

答案 0 :(得分:1)

添加您想要的因素列

library(dplyr)
tbl <- tbl %>% 
         mutate(colourgroup = case_when(
                                   adj_P_Value <= 0.01 ~ 1,
                                   adj_P_Value > 0.01 & adj_P_Value < 0.05 ~ 2,
                                   adj_P_Value >= 0.05 ~ 3 ))

然后改变

aes(x = LogFC, y = Probe_ID, group = Study_ID) 

aes(x = LogFC, y = Probe_ID, colour = factor(colourgroup), shape = factor(colourgroup))

并且

scale_color_manual(values=c("red","orange","black")) +
scale_shape_manual(values=c(1,2,3))

MINIMAL EXAMPLE

这个最小的ggplot命令对我有用。注意我故意切换xy值,redorange很难区分

ggplot(df2, aes(x = Probe_ID, y=LogFC, colour=factor(colourgroup), shape=factor(colourgroup))) +
  geom_point() +
  scale_color_manual(values=c("red","orange","black")) +
  scale_shape_manual(values=c(1,2,3))