我一直致力于一个项目,我将一架无人机飞行的图像拼接在草坪割草机模式中。我能够将单个图像中的图像拼接在一起(感谢stackoverflow上的许多答案)但是当我尝试将两个单独的传递拼接在一起时,我的方法产生的变换是荒谬的。这是我试图缝合的两个图像:
以下是我用来估算两者base
和curr
之间单应性的代码。
base_gray = cv2.cvtColor(base, cv2.COLOR_BGRA2GRAY)
curr_gray = cv2.cvtColor(curr, cv2.COLOR_BGRA2GRAY)
detector = cv2.ORB_create()
base_keys, base_desc = detector.detectAndCompute(base_gray, None)
curr_keys, curr_desc = detector.detectAndCompute(curr_gray, None)
FLANN_INDEX_LSH = 6
flann_params = dict(algorithm = FLANN_INDEX_LSH,
table_number = 12,
key_size = 20,
multi_probe_level = 2)
search_params = dict(checks=100)
matcher = cv2.FlannBasedMatcher(flann_params, search_params)
matches = matcher.match(base_desc, curr_desc)
max_dist = 0.0
min_dist = 100.0
for match in matches:
dist = match.distance
min_dist = dist if dist < min_dist else min_dist
max_dist = dist if dist > max_dist else max_dist
good_matches = [match for match in matches if match.distance <= 10 * min_dist ]
base_matches = []
curr_matches = []
for match in good_matches:
base_matches.append(base_keys[match.queryIdx].pt)
curr_matches.append(curr_keys[match.trainIdx].pt)
bm_final = np.asarray(base_matches)
cm_final = np.asarray(curr_matches)
# find perspective transformation using the arrays of corresponding points
transformation, hom_stati = cv2.findHomography(cm_final, bm_final, method=cv2.RANSAC, ransacReprojThreshold=1)
正如我所说,它不起作用。是因为透明背景搞乱了计算?
答案 0 :(得分:1)
我认为Flann可能不是你想要在这里匹配的东西。首先,实际上,由于您要转换为灰度,黑点,图像的边缘等可能会包含在您不想要的功能集中。其次,Flann使用方法构建特定的描述符,以便快速搜索图像数据库;它用于CBIR,不用于单应性估计。
相反,只需采用SIFT
或SURF
或ORB
或BRISK
的常规方法。请注意,所有这些都允许为其关键点检测步骤添加mask
,以便您可以从Alpha通道创建遮罩以忽略关键点。请参阅SIFT
and SURF
和{{的OpenCV文档3}}更多。