我想知道是否有一种方法可以从python生成器(特别是本例中的x_input_data的值)输入张量流队列的输入。
import tensorflow as tf
def generator():
x = 0
while True:
x+=1
yield x
def generate_inputs(g):
x = []
for a in range(6):
x.append(g.next())
return x
g = generator()
x_input_data = tf.cast(generate_inputs(g), tf.float32)
# x_input_data = tf.random_normal([6], mean=-1, stddev=4) #<---previous implementation
q = tf.FIFOQueue(capacity=3, dtypes=tf.float32)
x_input_data = tf.Print(x_input_data, data=[x_input_data], message="Raw inputs data generated:", summarize=6)
enqueue_op = q.enqueue_many(x_input_data)
numberOfThreads = 1
qr = tf.train.QueueRunner(q, [enqueue_op] * numberOfThreads)
tf.train.add_queue_runner(qr)
input = q.dequeue()
input = tf.Print(input, data=[q.size(), input], message="Nb elements left, input:")
# fake graph: START
y = input + 1
# fake graph: END
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for steps in range(100):
sess.run(y)
coord.request_stop()
coord.join(threads)
我希望打印出来:
[1 2 3 4 5 6]
[7 8 9 10 11 12]
etc...