你们能解释一下如何在akka-streams中使用新的groupBy
吗? Documentation似乎毫无用处。 groupBy
过去常常返回(T, Source)
但不再返回Source(List(
1 -> "1a", 1 -> "1b", 1 -> "1c",
2 -> "2a", 2 -> "2b",
3 -> "3a", 3 -> "3b", 3 -> "3c",
4 -> "4a",
5 -> "5a", 5 -> "5b", 5 -> "5c",
6 -> "6a", 6 -> "6b",
7 -> "7a",
8 -> "8a", 8 -> "8b",
9 -> "9a", 9 -> "9b",
))
.groupBy(3, _._1)
.map { case (aid, raw) =>
aid -> List(raw)
}
.reduce[(Int, List[String])] { case (l: (Int, List[String]), r: (Int, List[String])) =>
(l._1, l._2 ::: r._2)
}
.mergeSubstreams
.runForeach { case (aid: Int, items: List[String]) =>
println(s"$aid - ${items.length}")
}
。这是我的例子(我从文档中模仿了一个):
groupBy
这简直就是挂起。也许它会挂起,因为子流的数量低于唯一键的数量。但如果我有无限的流,我该怎么办?我想分组直到关键变化。
在我的实际流中,数据总是按值I分组排序。也许我根本不需要div {
border-width: 1px;
border-style: solid;
}
#container {
width: 200px;
height: 200px;
display: grid;
grid-template-rows: auto 1fr auto;
}
?
答案 0 :(得分:4)
你也可以使用statefulMapConcat
来实现它,因为它没有做任何子实现(但你必须忍受使用var
s的耻辱),这将会有点便宜:
source.statefulMapConcat { () =>
var prevKey: Option[Int] = None
var acc: List[String] = Nil
{ case (newKey, str) =>
prevKey match {
case Some(`newKey`) | None =>
prevKey = Some(newKey)
acc = str :: acc
Nil
case Some(oldKey) =>
val accForOldKey = acc.reverse
prevKey = Some(newKey)
acc = str :: Nil
(oldKey -> accForOldKey) :: Nil
}
}
}.runForeach(println)
答案 1 :(得分:3)
一年后,Akka Stream Contrib有一个AccumulateWhileUnchanged类可以做到这一点:
libraryDependencies += "com.typesafe.akka" %% "akka-stream-contrib" % "0.9"
和:
import akka.stream.contrib.AccumulateWhileUnchanged
source.via(new AccumulateWhileUnchanged(_._1))
答案 2 :(得分:1)
如果您的流数据始终排序,您可以利用它进行分组:
<select>
<option selected>ABC</option>
<option>DEF</option>
<option>GHI</option>
</select>
最后你会得到这些结果:
val source = Source(List(
1 -> "1a", 1 -> "1b", 1 -> "1c",
2 -> "2a", 2 -> "2b",
3 -> "3a", 3 -> "3b", 3 -> "3c",
4 -> "4a",
5 -> "5a", 5 -> "5b", 5 -> "5c",
6 -> "6a", 6 -> "6b",
7 -> "7a",
8 -> "8a", 8 -> "8b",
9 -> "9a", 9 -> "9b",
))
source
// group elements by pairs
// the last one will be not a pair, but a single element
.sliding(2,1)
// when both keys in a pair are different, we split the group into a subflow
.splitAfter(pair => (pair.headOption, pair.lastOption) match {
case (Some((key1, _)), Some((key2, _))) => key1 != key2
})
// then we cut only the first element of the pair
// to reconstruct the original stream, but grouped by sorted key
.mapConcat(_.headOption.toList)
// then we fold the substream into a single element
.fold(0 -> List.empty[String]) {
case ((_, values), (key, value)) => key -> (value +: values)
}
// merge it back and dump the results
.mergeSubstreams
.runWith(Sink.foreach(println))
但与groupBy相比,你并不受不同键数量的限制。
答案 3 :(得分:1)
我最终实现了自定义阶段
class GroupAfterKeyChangeStage[K, T](keyForItem: T ⇒ K, maxBufferSize: Int) extends GraphStage[FlowShape[T, List[T]]] {
private val in = Inlet[T]("GroupAfterKeyChangeStage.in")
private val out = Outlet[List[T]]("GroupAfterKeyChangeStage.out")
override val shape: FlowShape[T, List[T]] =
FlowShape(in, out)
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new GraphStageLogic(shape) with InHandler with OutHandler {
private val buffer = new ListBuffer[T]
private var currentKey: Option[K] = None
// InHandler
override def onPush(): Unit = {
val nextItem = grab(in)
val nextItemKey = keyForItem(nextItem)
if (currentKey.forall(_ == nextItemKey)) {
if (currentKey.isEmpty)
currentKey = Some(nextItemKey)
if (buffer.size == maxBufferSize)
failStage(new RuntimeException(s"Maximum buffer size is exceeded on key $nextItemKey"))
else {
buffer += nextItem
pull(in)
}
} else {
val result = buffer.result()
buffer.clear()
buffer += nextItem
currentKey = Some(nextItemKey)
push(out, result)
}
}
// OutHandler
override def onPull(): Unit = {
if (isClosed(in))
failStage(new RuntimeException("Upstream finished but there was a truncated final frame in the buffer"))
else
pull(in)
}
// InHandler
override def onUpstreamFinish(): Unit = {
val result = buffer.result()
if (result.nonEmpty) {
emit(out, result)
completeStage()
} else
completeStage()
// else swallow the termination and wait for pull
}
override def postStop(): Unit = {
buffer.clear()
}
setHandlers(in, out, this)
}
}
如果您不想复制粘贴,则将其添加到我维护的helper library中。为了使用,您需要添加
Resolver.bintrayRepo("cppexpert", "maven")
给您的解析器。添加添加foolowing到您的依赖项
"com.walkmind" %% "scala-tricks" % "2.15"
它在com.walkmind.akkastream.FlowExt
中作为流实现
def groupSortedByKey[K, T](keyForItem: T ⇒ K, maxBufferSize: Int): Flow[T, List[T], NotUsed]
以我的示例为例
source
.via(FlowExt.groupSortedByKey(_._1, 128))