这是一小段代码,它在图形的两行之间产生一个填充区域:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0.0, 2, 0.01)
y1 = np.sin(2 * np.pi * x)
y2 = 1.2 * np.sin(4 * np.pi * x)
fig, ax1 = plt.subplots(1, 1, sharex=True)
# Test support for masked arrays.
ax1.fill_between(x, 0, y1)
ax1.set_ylabel('between y1 and 0')
y2 = np.ma.masked_greater(y2, 1.0)
ax1.plot(x, y1, x, y2, color='black')
ax1.fill_between(
x, y1, y2, where=y2 >= y1,
facecolor='green',
interpolate=True)
ax1.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True)
ax1.set_title('Now regions with y2>1 are masked')
# Show the plot.
plt.show()
看起来像这样:
现在,更改开始,以便x
现在是日期时间对象的集合,如下所示:
import datetime
x1 = np.arange(0.0, 2, 0.01)
now = np.datetime64(datetime.datetime.now())
x = np.array([now - np.timedelta64(datetime.timedelta(seconds=i)) for i in range(200)])
y1 = np.sin(2 * np.pi * x1)
y2 = 1.2 * np.sin(4 * np.pi * x1)
的产率:
Traceback (most recent call last): File "fill_between_demo.py", line 21, in <module>
ax1.fill_between(x, 0, y1)
File "/home/usr/.virtualenvs/raiju/lib/python3.6/site-packages/matplotlib/__init__.py", line 1898, in inner
return func(ax, *args, **kwargs)
File "/home/usr/.virtualenvs/raiju/lib/python3.6/site-packages/matplotlib/axes/_axes.py", line 4778, in fill_between
x = ma.masked_invalid(self.convert_xunits(x))
File "/home/usr/.virtualenvs/raiju/lib/python3.6/site-packages/numpy/ma/core.py", line 2388, in masked_invalid
condition = ~(np.isfinite(a))
TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
为什么会发生这种情况以及如何解决?
请注意,绘制数据(也就是不使用fill*
)可以正常工作。
答案 0 :(得分:7)
问题是,没有为isfinite
dtype定义numpy ufunc numpy.datetime64
。但是,我们正努力改变这种状况。此issue on numpy's github正在处理此pull-request,但只要未完成并合并,您就无法在该dtype上使用isfinite
。这是一个问题,因为matplotlib.pyplot.fill_between
在调用numpy.ma.masked_invalid
来掩盖输入数组的所有无效条目时隐式使用此函数。
虽然有一种解决方法。正如本answer中提到的关于fill_between
绘制Series
类型的datetime64
的类似问题,pandas为(以及其他)numpy数组注册了一个自定义转换器使用matplotlib datetime64
dtype。要使用它,您只需导入pandas:
import numpy as np
import matplotlib.pyplot as plt
import datetime
# import pandas for its converter that is then used in pyplot!
import pandas
x1 = np.arange(0.0, 2, 0.01)
now = np.datetime64(datetime.datetime.now())
x = np.array([now - np.timedelta64(datetime.timedelta(seconds=i))
for i in range(200)])
y1 = np.sin(2 * np.pi * x1)
y2 = 1.2 * np.sin(4 * np.pi * x1)
fig, ax1 = plt.subplots(1, 1, sharex=True)
# Test support for masked arrays.
ax1.fill_between(x, 0, y1)
ax1.set_ylabel('between y1 and 0')
y2 = np.ma.masked_greater(y2, 1.0)
ax1.plot(x, y1, x, y2, color='black')
ax1.fill_between(
x, y1, y2, where=y2 >= y1,
facecolor='green',
interpolate=True)
ax1.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True)
ax1.set_title('Now regions with y2>1 are masked')
# Show the plot.
plt.show()
将起作用并为您提供所需的输出:
答案 1 :(得分:0)
我对ax.setxlims有类似的问题,因为我忘记了将某些日期时间转换为np.datetime。
>>> import datetime
>>> import numpy
>>> a = datetime.datetime.now()
>>> numpy.isfinite(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
>>> a = numpy.datetime64(a)
>>> numpy.isfinite(a)
True
似乎不再需要导入熊猫