我想要繁殖的2个pandas DataFrame:
frame_score:
Score1 Score2
0 100 80
1 -150 20
2 -110 70
3 180 99
4 125 20
frame_weights:
Score1 Score2
0 0.6 0.4
我试过了:
import pandas as pd
import numpy as np
frame_score = pd.DataFrame({'Score1' : [100, -150, -110, 180, 125],
'Score2' : [80, 20, 70, 99, 20]})
frame_weights = pd.DataFrame({'Score1': [0.6], 'Score2' : [0.4]})
print('frame_score: \n{0}'.format(frame_score))
print('\nframe_weights: \n{0}'.format(frame_weights))
# Each of the following alternatives yields the same results
frame_score_weighted = frame_score.mul(frame_weights, axis=0)
frame_score_weighted = frame_score * frame_weights
frame_score_weighted = frame_score.multiply(frame_weights, axis=1)
print('\nframe_score_weighted: \n{0}'.format(frame_score_weighted))
返回:
frame_score_weighted:
Score1 Score2
0 60.0 32.0
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
第1行到第4行是NaN
。我怎么能避免这种情况?例如,第1行应为-90 8
(-90 = -150 * 0.6; 8 = 20 * 0.4)。
例如,Numpy可以广播以匹配尺寸。
答案 0 :(得分:3)
编辑:对于任意维度,请尝试使用values
以类似数组的方式处理数据框的值:
# element-wise multiplication
frame_score_weighted = frame_score.values*frame_weights.values
# change to pandas dataframe and rename columns
frame_score_weighted = pd.DataFrame(data=frame_score_weighted, columns=['Score1','Score2'])
#Out:
Score1 Score2
0 60.0 32.0
1 -90.0 8.0
2 -66.0 28.0
3 108.0 39.6
4 75.0 8.0
只需使用一些额外的索引,以确保在进行乘法时将所需的权重提取为标量。
frame_score['Score1'] = frame_score['Score1']*frame_weights['Score1'][0]
frame_score['Score2'] = frame_score['Score2']*frame_weights['Score2'][0]
frame_score
#Out:
Score1 Score2
0 60.0 32.0
1 -90.0 8.0
2 -66.0 28.0
3 108.0 39.6
4 75.0 8.0
答案 1 :(得分:2)
默认情况下,当pd.DataFrame
乘以pd.Series
时,pandas
会将pd.Series
的索引与pd.DataFrame
的列对齐。因此,我们只需访问第一行即可从pd.Series
获得相关的frame_weights
。
frame_score * frame_weights.loc[0]
Score1 Score2
0 60.0 32.0
1 -90.0 8.0
2 -66.0 28.0
3 108.0 39.6
4 75.0 8.0
您可以使用
编辑frame_score
frame_score *= frame_weights.loc[0]