我想分析四个工具在运行多个程序时的性能。一个子图是所有程序中一个工具的结果。结果应如下所示:
我使用for循环迭代程序列表并每次绘制一个部分如下:
但是这些情节看起来像是一个,我不能使用axis.set_xticks()
来区分它们的x刻度。看来这个功能没有效果。
我是否使用正确的函数来设置x刻度?或者我该如何制作这个情节呢?
draw_hist_query()
可能是我问题最重要的功能
数据样本:
boolector,ppbv,stp,z3
0.05349588394165039,0.015434503555297852,0.028127193450927734,0.11303281784057617
0.0027561187744140625,0.004331827163696289,0.007134914398193359,0.016040563583374023
0.003190755844116211,0.005587577819824219,0.002897500991821289,0.013916015625
0.009758472442626953,0.02006363868713379,0.0031282901763916016,0.011539697647094727
0.057138681411743164,0.012826681137084961,0.030836820602416992,0.0217435359954834
代码:
index = range(len(solvers))
fig, axes = plt.subplots(nrows=4)
solvers = ['z3', 'stp', 'boolector', 'ppbv']
colors = ['g', 'c', 'b', 'r', 'y', 'orange', 'grey']
ticks = [0.1, 0.5, 1.0, 2.0]
width=0.2
# program entry
def all_time_query(path):
csv = xxx.csv # the array of data to be analyzed, one csv for one program
for axis in axes:
axis.set_xticks(range(len(csv)))
for c in csv:
multi_time_query(c) # draw the bar pair for c, which shows the upper image for one program on four tools
def multi_time_query(csv):
data = pd.read_csv(csv)
for solver in solvers: # the four tools
bin = index[solvers.index(solver)]
hist_t_query(data, solver, ax=axes[bin]) # details to draw the bar pair, uses dataframe.plot.bar
def hist_t_query(data, solver, ax):
solver_data = pd.DataFrame(data).as_matrix(columns=[solver])
# draw one bar for demo
draw_hist_query(pd.DataFrame(solver_data), ax)
# left of bar pair, the right one is similar
def draw_hist_query(df, ax):
count = []
for i in range(len(ticks)):
count.append(df[df < ticks[i]].count())
color = stat.colors[i]
if i == 0:
count[i].plot.bar(ax=ax, color=color, width=width, position=0)
else:
(count[i] - count[i - 1]).plot.bar(bottom=count[i - 1],
ax=ax, color=color, width=width, position=0)
答案 0 :(得分:0)
一般来说,你几乎没有选择。您可以使用plt.tight_layout()
并自动完成所有操作,也可以使用plt.subplot_adjust()
并自行指定每个参数。
正如您在文档中看到的那样,签名就是这样:
subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
如果你要进入交互式窗口,你可以选择调整那里的参数,你可以看到你的图表随每个参数的变化情况
然后你可以用最适合你的方式调用subplot_adjust。
我希望它有所帮助。
答案 1 :(得分:0)
我以前错误地想到的是关于次要情节。我希望在一对已经存在之后在子图中添加另一个条形对。 然而,一个子图应该一起绘制(一次),并且不应该分开。在我的情况下,一个子图的条应该一起出现,只需要四次绘制所有子图。
这是我的新版代码:
def time_query_project(path):
fig, axis = plt.subplots(nrows=4)
csv = sio.find_csv(path)
data = {}
for solver in solvers:
for c in csv:
df = pd.DataFrame(pd.read_csv(c), columns=[solver])
data.update({get_name(c): df.to_dict()[solver]})
df = pd.DataFrame.from_dict(data, orient='columns')
ax = axis[solvers.index(solver)]
ax.set_ylabel(solver)
hist_t_query(df, ax)
def hist_t_query(data, solver, ax):
solver_data = pd.DataFrame(data).as_matrix(columns=[solver])
# draw one bar for demo
draw_hist_query(pd.DataFrame(solver_data), ax)
# left of bar pair, the right one is similar
def draw_hist_query(df, ax):
count = []
for i in range(len(ticks)):
count.append(df[df < ticks[i]].count())
color = stat.colors[i]
if i == 0:
count[i].plot.bar(ax=ax, color=color, width=width, position=0)
else:
(count[i] - count[i - 1]).plot.bar(bottom=count[i - 1],
ax=ax, color=color, width=width, position=0)