Keras:如何保存模型并继续培训?

时间:2017-07-29 19:48:00

标签: python keras

我有一个模特,我已经训练了40个时代。我为每个时期保留了检查点,并使用model.save()保存了模型。培训代码是

n_units = 1000
model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# define the checkpoint
filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)

但是,当加载模型并再次训练时,它会重新开始,就像之前没有训练过一样。损失不是从上次培训开始的。

令我困惑的是,当我使用重新定义的模型结构和load_weight加载模型时,model.predict()效果很好。因此,我相信模型权重已加载。

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
filename = "word2vec-39-0.0027.hdf5"
model.load_weights(filename)
model.compile(loss='mean_squared_error', optimizer='adam')

然而,当我继续训练时

filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)

损失与初始状态一样高。

我搜索并找到了一些保存和加载模型的示例: http://machinelearningmastery.com/save-load-keras-deep-learning-models/ https://github.com/fchollet/keras/issues/1872

但它们都不起作用。谁能帮我?感谢。

更新

Loading a trained Keras model and continue training

我试过

model.save('partly_trained.h5')
del model
load_model('partly_trained.h5')

它有效。但是当我关闭python时,再次重新打开load_model。它失败。损失与初始状态一样高。

更新

我尝试了Yu-Yang的示例代码。有用。但回到我的代码,我仍然失败了。 这是原始培训。第二个时代应该从损失= 3.1 ***开始。

13700/13846 [============================>.] - ETA: 0s - loss: 3.0519
13750/13846 [============================>.] - ETA: 0s - loss: 3.0511
13800/13846 [============================>.] - ETA: 0s - loss: 3.0512Epoch 00000: loss improved from inf to 3.05101, saving model to LPT-00-3.0510.h5

13846/13846 [==============================] - 81s - loss: 3.0510    
Epoch 2/60

   50/13846 [..............................] - ETA: 80s - loss: 3.1754
  100/13846 [..............................] - ETA: 78s - loss: 3.1174
  150/13846 [..............................] - ETA: 78s - loss: 3.0745

我关闭了Python并重新打开它。带model = load_model("LPT-00-3.0510.h5")的加载模型然后用

训练
filepath="LPT-{epoch:02d}-{loss:.4f}.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=60, batch_size=50, callbacks=callbacks_list)

损失从4.54开始。

Epoch 1/60
   50/13846 [..............................] - ETA: 162s - loss: 4.5451
   100/13846 [..............................] - ETA: 113s - loss: 4.3835

7 个答案:

答案 0 :(得分:23)

由于很难澄清问题所在,我从您的代码中创建了一个玩具示例,它似乎工作正常。

import numpy as np
from numpy.testing import assert_allclose
from keras.models import Sequential, load_model
from keras.layers import LSTM, Dropout, Dense
from keras.callbacks import ModelCheckpoint

vec_size = 100
n_units = 10

x_train = np.random.rand(500, 10, vec_size)
y_train = np.random.rand(500, vec_size)

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')

# define the checkpoint
filepath = "model.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]

# fit the model
model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

# load the model
new_model = load_model("model.h5")
assert_allclose(model.predict(x_train),
                new_model.predict(x_train),
                1e-5)

# fit the model
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
new_model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

模型加载后损失继续减少。 (重启python也没问题)

Using TensorFlow backend.
Epoch 1/5
500/500 [==============================] - 2s - loss: 0.3216     Epoch 00000: loss improved from inf to 0.32163, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.2923     Epoch 00001: loss improved from 0.32163 to 0.29234, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.2542     Epoch 00002: loss improved from 0.29234 to 0.25415, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.2086     Epoch 00003: loss improved from 0.25415 to 0.20860, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1725     Epoch 00004: loss improved from 0.20860 to 0.17249, saving model to model.h5

Epoch 1/5
500/500 [==============================] - 0s - loss: 0.1454     Epoch 00000: loss improved from inf to 0.14543, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.1289     Epoch 00001: loss improved from 0.14543 to 0.12892, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.1169     Epoch 00002: loss improved from 0.12892 to 0.11694, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.1097     Epoch 00003: loss improved from 0.11694 to 0.10971, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1057     Epoch 00004: loss improved from 0.10971 to 0.10570, saving model to model.h5

BTW,重新定义模型后跟load_weight()肯定不会起作用,因为save_weight()load_weight()不会保存/加载优化程序。

答案 1 :(得分:3)

带复选标记的答案不正确;真正的问题更加微妙。

创建模型检查点时,请检查最佳点:

cp1 = ModelCheckpoint(文件路径,监视器='丢失',详细= 1,save_best_only =真实,模式='最小') cp1.best

您将看到此设置为“ np.inf” =。不幸的是,这就是他们所能做的。

但是,当训练并重新创建ModelCheckpoint时,如果您称“拟合”,并且损失小于先前已知的值,那么它似乎可以工作。但是在更复杂的问题中,情况并非如此,因此您最终将保存一个不好的模型而失去最好的模型

正确的修正和修改如下所示:

import numpy as np
from numpy.testing import assert_allclose
from keras.models import Sequential, load_model
from keras.layers import LSTM, Dropout, Dense
from keras.callbacks import ModelCheckpoint

vec_size = 100
n_units = 10

x_train = np.random.rand(500, 10, vec_size)
y_train = np.random.rand(500, vec_size)

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')

# define the checkpoint
filepath = "model.h5"
cp1= ModelCheckpoint(filepath=filepath, monitor='loss',     save_best_only=True, verbose=1, mode='min')
callbacks_list = [cp1]

# fit the model
model.fit(x_train, y_train, epochs=5, batch_size=50, shuffle=True, validation_split=0.1, callbacks=callbacks_list)

# load the model
new_model = load_model(filepath)
#assert_allclose(model.predict(x_train),new_model.predict(x_train), 1e-5)
score = model.evaluate(x_train, y_train, batch_size=50)
cp1 = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
cp1.best = score # <== ****THIS IS THE KEY **** See source for  ModelCheckpoint

# fit the model
callbacks_list = [cp1]
new_model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

答案 2 :(得分:1)

我将我的代码与此示例http://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/进行了比较 通过仔细阻止逐行并再次运行。经过一整天,终于,我发现了什么是错的。

在进行char-int映射时,我使用了

# title_str_reduced is a string
chars = list(set(title_str_reduced))
# make char to int index mapping
char2int = {}
for i in range(len(chars)):
    char2int[chars[i]] = i    

集合是无序数据结构。在python中,当一个集合被转换为一个有序的列表时,就会给出这个顺序。因此,每当我重新打开python时,我的char2int字典都是随机的。 我通过添加sorted()

修复了我的代码
chars = sorted(list(set(title_str_reduced)))

这会强制转换为固定顺序。

答案 3 :(得分:1)

以上答案使用tensorflow 1.x.这是使用Tensorflow 2.x的更新版本。

import numpy as np
from numpy.testing import assert_allclose
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import LSTM, Dropout, Dense
from tensorflow.keras.callbacks import ModelCheckpoint

vec_size = 100
n_units = 10

x_train = np.random.rand(500, 10, vec_size)
y_train = np.random.rand(500, vec_size)

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')

# define the checkpoint
filepath = "model.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]

# fit the model
model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

# load the model
new_model = load_model("model.h5")
assert_allclose(model.predict(x_train),
                new_model.predict(x_train),
                1e-5)

# fit the model
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
new_model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

答案 4 :(得分:0)

以下是保存模型的官方kera文档:

https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

this post中,作者提供了两个将模型保存并加载到文件的示例:

  • JSON格式。
  • YAML foramt。

答案 5 :(得分:0)

我想你可以写

model.save('partly_trained.h5' )

model = load_model('partly_trained.h5')

代替

model = Sequential()   model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))   model.add(Dropout(0.2))   model.add(LSTM(n_units, return_sequences=True))   model.add(Dropout(0.2))   model.add(LSTM(n_units))   model.add(Dropout(0.2))   model.add(Dense(vec_size, activation='linear'))   model.compile(loss='mean_squared_error', optimizer='adam')

然后继续培训。 因为model.save同时存储了架构和权重。

答案 6 :(得分:0)

假设您有这样的代码:

model = some_model_you_made(input_img) # you compiled your model in this 
model.summary()

model_checkpoint = ModelCheckpoint('yours.h5', monitor='val_loss', verbose=1, save_best_only=True)

model_json = model.to_json()
with open("yours.json", "w") as json_file:
    json_file.write(model_json)

model.fit_generator(#stuff...) # or model.fit(#stuff...)

现在将您的代码转换为此:

model = some_model_you_made(input_img) #same model here
model.summary()

model_checkpoint = ModelCheckpoint('yours.h5', monitor='val_loss', verbose=1, save_best_only=True) #same ckeckpoint

model_json = model.to_json()
with open("yours.json", "w") as json_file:
    json_file.write(model_json)

with open('yours.json', 'r') as f:
    old_model = model_from_json(f.read()) # open the model you just saved (same as your last train) with a different name

old_model.load_weights('yours.h5') # the model checkpoint you trained before
old_model.compile(#stuff...) # need to compile again (exactly like the last compile)

# now start training with the checkpoint...
old_model.fit_generator(#same stuff like the last train) # or model.fit(#stuff...)