我试图使LSTM模型在上一次运行中断之前继续运行。一切顺利,直到我尝试适应网络。然后给出一个错误:
ValueError:检查目标时出错:预期density_29具有3个维度,但数组的形状为(672,1)
我查看了this和this等各种文章,但是我看不出代码有什么问题。
from keras import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from keras.models import Sequential,Model
from keras.layers import LSTM, Dense, Bidirectional, Input,Dropout,BatchNormalization
from keras import backend as K
from keras.engine.topology import Layer
from keras import initializers, regularizers, constraints
from keras.callbacks import ModelCheckpoint
from keras.models import load_model
import os.path
import os
filepath="Train-weights.best.hdf5"
act = 'relu'
model = Sequential()
model.add(BatchNormalization(input_shape=(10, 128)))
model.add(Bidirectional(LSTM(128, dropout=0.5, activation=act, return_sequences=True)))
model.add(Dense(1,activation='sigmoid'))
if (os.path.exists(filepath)):
print("extending training of previous run")
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
with open('model_architecture.json', 'r') as f:
model = model_from_json(f.read())
model.load_weights(filepath)
else:
print("First run")
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=2)
model.save_weights(filepath)
with open('model_architecture.json', 'w') as f:
f.write(model.to_json())
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=0)
答案 0 :(得分:1)
尝试add_filter( 'post_class', function($classes){
$product = wc_get_product();
return ($product) ? array('product' 'or-any-class-you-want') : $classes; } , 9999 );
,您会看到网络中最后一层(即密集层)的输出形状为model.summary()
。因此,您提供给模型的标签(即(None, 10, 1)
)也必须具有y_train
的形状。
如果输出形状(num_samples, 10, 1)
不是您想要的形状(例如,您希望(None, 10, 1)
作为模型的输出形状),则需要修改模型定义。一个简单的修改就是从LSTM层中删除(None, 1)
参数。