绘制模型损失和模型准确性在具有keras的顺序模型中似乎是直截了当的。但是,如果我们将数据拆分为X_train
,Y_train
,X_test
,Y_test
并使用交叉验证,那么如何绘制它们呢?我收到错误,因为找不到'val_acc'
。这意味着我无法在测试集上绘制结果。
这是我的代码:
# Create the model
def create_model(neurons = 379, init_mode = 'uniform', activation='relu', inputDim = 8040, dropout_rate=1.1, learn_rate=0.001, momentum=0.7, weight_constraint=6): #weight_constraint=
model = Sequential()
model.add(Dense(neurons, input_dim=inputDim, kernel_initializer=init_mode, activation=activation, kernel_constraint=maxnorm(weight_constraint), kernel_regularizer=regularizers.l2(0.002))) #, activity_regularizer=regularizers.l1(0.0001))) # one inner layer
#model.add(Dense(200, input_dim=inputDim, activation=activation)) # second inner layer
#model.add(Dense(60, input_dim=inputDim, activation=activation)) # second inner layer
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='sigmoid'))
optimizer = RMSprop(lr=learn_rate)
# compile model
model.compile(loss='binary_crossentropy', optimizer='RmSprop', metrics=['accuracy']) #weight_constraint=weight_constraint
return model
model = create_model() #weight constraint= 3 or 4
seed = 7
# Define k-fold cross validation test harness
kfold = StratifiedKFold(n_splits=3, shuffle=True, random_state=seed)
cvscores = []
for train, test in kfold.split(X_train, Y_train):
print("TRAIN:", train, "VALIDATION:", test)
# Fit the model
history = model.fit(X_train, Y_train, epochs=40, batch_size=50, verbose=0)
# Plot Model Loss and Model accuracy
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc']) # RAISE ERROR
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss']) #RAISE ERROR
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
我希望对它进行一些必要的修改,以便将这些图也用于测试。
答案 0 :(得分:1)
根据Keras.io documentation,似乎为了能够使用'val_acc'
和'val_loss'
,您需要启用验证和准确性监控。这样做就像在代码中向model.fit
添加validation_split一样简单!
而不是:
history = model.fit(X_train, Y_train, epochs=40, batch_size=50, verbose=0)
您需要执行以下操作:
history = model.fit(X_train, Y_train, validation_split=0.33, epochs=40, batch_size=50, verbose=0)
这是因为通常情况下,验证发生在列车组的1/3处。
这是一个额外的潜在有用的来源:
Plotting learning curve in keras gives KeyError: 'val_acc'
希望它有所帮助!