问题:我如何使用boostrap来获取集合的置信区间 统计量的协方差矩阵的特征值,分别为 数据框中的每个组(因子级别)?
问题:我无法完成数据计算
结构我需要包含适用于boot
函数的这些结果,或者一种在组中“映射”引导程序并以适合绘图的形式获得置信区间的方法。
上下文:
在heplots
包中,boxM
计算协方差矩阵相等的Box M检验。
有一种绘图方法可以生成一个有用的日志决定因素图
测试。该图中的置信区间基于渐近理论近似。
> library(heplots)
> iris.boxm <- boxM(iris[, 1:4], iris[, "Species"])
> iris.boxm
Box's M-test for Homogeneity of Covariance Matrices
data: iris[, 1:4]
Chi-Sq (approx.) = 140.94, df = 20, p-value < 2.2e-16
> plot(iris.boxm, gplabel="Species")
绘图方法还可以显示特征值的其他函数,但没有理论值 在这种情况下可以获得置信区间。
op <- par(mfrow=c(2,2), mar=c(5,4,1,1))
plot(iris.boxm, gplabel="Species", which="product")
plot(iris.boxm, gplabel="Species", which="sum")
plot(iris.boxm, gplabel="Species", which="precision")
plot(iris.boxm, gplabel="Species", which="max")
par(op)
因此,我希望能够使用boostrap计算这些CI,并将其显示在相应的图中。
我尝试了什么:
以下是提升这些统计数据的功能,但总数
样本,不考虑群组(Species
)。
cov_stat_fun <- function(data, indices,
stats=c("logdet", "prod", "sum", "precision", "max")
) {
dat <- data[indices,]
cov <- cov(dat, use="complete.obs")
eigs <- eigen(cov)$values
res <- c(
"logdet" = log(det(cov)),
"prod" = prod(eigs),
"sum" = sum(eigs),
"precision" = 1/ sum(1/eigs),
"max" = max(eigs)
)
}
boot_cov_stat <- function(data, R=500, ...) {
boot(data, cov_stat_fun, R=R, ...)
}
这样可行,但我需要按组(以及总样本)的结果
> iris.boot <- boot_cov_stat(iris[,1:4])
>
> iris.ci <- boot.ci(iris.boot)
> iris.ci
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates
CALL :
boot.ci(boot.out = iris.boot)
Intervals :
Level Normal Basic Studentized
95% (-6.622, -5.702 ) (-6.593, -5.653 ) (-6.542, -5.438 )
Level Percentile BCa
95% (-6.865, -5.926 ) (-6.613, -5.678 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
>
我还编写了一个函数来计算每个组的单独协方差矩阵,但我无法看到如何在我的引导函数中使用它。有人可以帮忙吗?
# calculate covariance matrices by group and pooled
covs <- function(Y, group) {
Y <- as.matrix(Y)
gname <- deparse(substitute(group))
if (!is.factor(group)) group <- as.factor(as.character(group))
valid <- complete.cases(Y, group)
if (nrow(Y) > sum(valid))
warning(paste(nrow(Y) - sum(valid)), " cases with missing data have been removed.")
Y <- Y[valid,]
group <- group[valid]
nlev <- nlevels(group)
lev <- levels(group)
mats <- aux <- list()
for(i in 1:nlev) {
mats[[i]] <- cov(Y[group == lev[i], ])
}
names(mats) <- lev
pooled <- cov(Y)
c(mats, "pooled"=pooled)
}
修改:
在一个看似相关的问题Bootstrap by groups中,建议通过使用strata
boot()
参数来提供答案,但没有示例。 [啊:strata
参数只是确保在bootstrap样本中表示层与数据中的频率相关。]
为我的问题尝试这个,我没有进一步开悟,因为我想得到的是每个Species
的单独的置信区间。
> iris.boot.strat <- boot_cov_stat(iris[,1:4], strata=iris$Species)
>
> boot.ci(iris.boot.strat, conf=0.95, type=c("basic", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates
CALL :
boot.ci(boot.out = iris.boot.strat, conf = 0.95, type = c("basic",
"bca"))
Intervals :
Level Basic BCa
95% (-6.587, -5.743 ) (-6.559, -5.841 )
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable
>
答案 0 :(得分:3)
如果我理解你的问题,你可以按组运行你的引导功能,如下所示:
library(boot)
library(tidyverse)
# Pooled
iris.boot <- boot_cov_stat(iris[,1:4])
iris.ci <- boot.ci(iris.boot)
# By Species
boot.list = setNames(unique(iris$Species), unique(iris$Species)) %>%
map(function(group) {
iris.boot = boot_cov_stat(iris[iris$Species==group, 1:4])
boot.ci(iris.boot)
})
# Combine pooled and by-Species results
boot.list = c(boot.list, list(Pooled=iris.ci))
boot.list
$setosa BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 500 bootstrap replicates CALL : boot.ci(boot.out = iris.boot) Intervals : Level Normal Basic Studentized 95% (-13.69, -11.86 ) (-13.69, -11.79 ) (-13.52, -10.65 ) Level Percentile BCa 95% (-14.34, -12.44 ) (-13.65, -11.99 ) Calculations and Intervals on Original Scale Warning : BCa Intervals used Extreme Quantiles Some BCa intervals may be unstable $versicolor BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 500 bootstrap replicates CALL : boot.ci(boot.out = iris.boot) Intervals : Level Normal Basic Studentized 95% (-11.37, -9.81 ) (-11.36, -9.78 ) (-11.25, -8.97 ) Level Percentile BCa 95% (-11.97, -10.39 ) (-11.35, -10.09 ) Calculations and Intervals on Original Scale Warning : BCa Intervals used Extreme Quantiles Some BCa intervals may be unstable $virginica BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 500 bootstrap replicates CALL : boot.ci(boot.out = iris.boot) Intervals : Level Normal Basic Studentized 95% (-9.467, -7.784 ) (-9.447, -7.804 ) (-9.328, -6.959 ) Level Percentile BCa 95% (-10.050, -8.407 ) ( -9.456, -8.075 ) Calculations and Intervals on Original Scale Warning : BCa Intervals used Extreme Quantiles Some BCa intervals may be unstable $Pooled BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 500 bootstrap replicates CALL : boot.ci(boot.out = iris.boot) Intervals : Level Normal Basic Studentized 95% (-6.620, -5.714 ) (-6.613, -5.715 ) (-6.556, -5.545 ) Level Percentile BCa 95% (-6.803, -5.906 ) (-6.624, -5.779 ) Calculations and Intervals on Original Scale Some BCa intervals may be unstable
答案 1 :(得分:0)
我认为最好的一般答案是@ eipi10提出的扩展,使用某种方法从bootci
对象中提取所需的置信区间。这是broom
包中缺少的。
作为一种有益的替代方案,我尝试直接在引导程序的结果上使用broom::tidy()
。它不是(通常是不对称的)置信区间,而是将引导程序估计值设为statistic
,bias
和std.error
。但是,根据我得到的结果(见下文),我怀疑broom::tidy()
在这种情况下是否给出了正确的结果。
# try just using tidy on the bootstrap results
## pooled
iris.boot <- boot_cov_stat(iris[,1:4])
iris.pooled <- tidy(iris.boot)
,并提供:
> iris.pooled
term statistic bias std.error
1 logdet -6.25922391 -0.0906294902 0.2469587430
2 prod 0.00191273 -0.0001120317 0.0004485317
3 sum 4.57295705 -0.0382145128 0.2861790776
4 precision 0.01692092 -0.0005047993 0.0016818910
5 max 4.22824171 -0.0329408193 0.2815648589
>
现在,使用map
对群组的另一个答案中描述的方法,
并结合:
## individual groups
boot.list2 = setNames(unique(iris$Species), unique(iris$Species)) %>%
map(function(group) {
iris.boot = boot_cov_stat(iris[iris$Species==group, 1:4])
tidy(iris.boot)
})
# Combine pooled and by-Species results
boot.list <- c(boot.list2, list(Pooled=iris.pooled))
转换为数据框:
## transform this list to a data frame, with a group variable
result <- bind_rows(boot.list) %>%
mutate(group = rep(c( levels(iris$Species), "Pooled"), 5)) %>%
arrange(term)
> result
term statistic bias std.error group
1 logdet -1.306736e+01 -3.240621e-01 4.660334e-01 setosa
2 logdet -1.087433e+01 -2.872073e-01 3.949917e-01 versicolor
3 logdet -8.927058e+00 -2.925485e-01 4.424367e-01 virginica
4 logdet -6.259224e+00 -9.062949e-02 2.469587e-01 Pooled
5 max 2.364557e-01 -6.696719e-03 4.426305e-02 setosa
6 max 4.878739e-01 -6.798321e-03 8.662880e-02 versicolor
7 max 6.952548e-01 -6.517223e-03 1.355433e-01 virginica
8 max 4.228242e+00 -3.294082e-02 2.815649e-01 Pooled
9 precision 5.576122e-03 -5.928678e-04 8.533907e-04 Pooled
10 precision 7.338788e-03 -6.894908e-04 1.184594e-03 setosa
11 precision 1.691212e-02 -1.821494e-03 2.000718e-03 versicolor
12 precision 1.692092e-02 -5.047993e-04 1.681891e-03 virginica
13 prod 2.113088e-06 -4.158518e-07 7.850009e-07 versicolor
14 prod 1.893828e-05 -3.605691e-06 6.100376e-06 virginica
15 prod 1.327479e-04 -2.381536e-05 4.792428e-05 Pooled
16 prod 1.912730e-03 -1.120317e-04 4.485317e-04 setosa
17 sum 3.092041e-01 -1.005543e-02 4.623437e-02 virginica
18 sum 6.248245e-01 -1.238896e-02 8.536621e-02 Pooled
19 sum 8.883673e-01 -1.500578e-02 1.409230e-01 setosa
20 sum 4.572957e+00 -3.821451e-02 2.861791e-01 versicolor
>
这给出了一些现在可以绘制的东西,据说对应于原始问题中没有误差条的情节:
result %>% mutate(Pooled = group == "Pooled") %>%
filter (term != "logdet") %>%
ggplot(aes(y=statistic, x=group, color=Pooled)) +
geom_point(size=2.5) +
geom_errorbar(aes(ymin=statistic-2*std.error,
ymax=statistic+2*std.error), width=0.4) +
facet_wrap( ~ term, scales="free") +
coord_flip() + guides(color=FALSE)
然而,这个“整洁的情节”似乎明显错误。理论上说,轮询样本的结果必须在每种情况下介于不同组之间,因为它在某种意义上是对群体的“凸组合”。将下面的图表与原始问题中给出的图表进行比较。 (这可能是我在这里做错了,但我看不出有什么缺陷。)