R:使用Post Hocs进行弗里德曼测试

时间:2017-07-26 16:38:53

标签: r

我正在尝试使用此source("https://www.r-statistics.com/wp-content/uploads/2010/02/Friedman-Test-with-Post-Hoc.r.txt")中的代码在我的数据上运行Friedman测试的事后测试。

当我运行我的数据代码时:

friedman.test.with.post.hoc(Rating ~ weeks | Student ,Qr)   

我收到错误:Error in .local(.Object, ...) : ‘x’ is not a balanced factor 我不确定它是指什么,但我已经检查了我的数据缺失数据点等... 有谁知道这可能意味着什么或我如何解决它?

请查看我的数据。

干杯!

> dput(Qr)
structure(list(Student = c(789331L, 805933L, 826523L, 832929L, 
838607L, 826523L, 832929L, 838607L, 841903L, 843618L, 852125L, 
876406L, 879972L, 885650L, 888712L, 903303L, 957206L, 957759L, 
959200L, 968728L, 971179L, 952797L, 965873L, 967416L, 789331L, 
826523L, 826523L, 843618L, 852125L, 876406L, 879972L, 885650L, 
888712L, 903303L, 796882L, 831487L, 834598L, 836364L, 839802L, 
855524L, 873527L, 885409L, 894218L, 956952L, 957206L, 957759L, 
959200L, 962490L, 968728L, 969005L, 976863L, 981621L, 952797L, 
965873L, 975424L, 789331L, 805933L, 826523L, 838607L, 826523L, 
838607L, 841903L, 843618L, 852125L, 876406L, 888712L, 903303L, 
796882L, 830271L, 831487L, 834598L, 836364L, 839802L, 855524L, 
873527L, 885409L, 894218L, 957206L, 957759L, 968728L, 969005L, 
971179L, 981621L, 952797L, 789331L, 805933L, 826523L, 832929L, 
838607L, 826523L, 832929L, 838607L, 841903L, 843618L, 876406L, 
879972L, 885650L, 888712L, 903303L, 796882L, 827911L, 830271L, 
831487L, 834598L, 836364L, 839802L, 855524L, 873527L, 885409L, 
894218L, 928026L, 932196L, 955389L, 956952L, 957206L, 957759L, 
959200L, 962490L, 968728L, 969005L, 971179L, 976863L, 981621L, 
975424L, 789331L, 805933L, 826523L, 832929L, 838607L, 826523L, 
832929L, 838607L, 841903L, 843618L, 852125L, 876406L, 879972L, 
885650L, 903303L, 796882L, 827911L, 830271L, 831487L, 834598L, 
836364L, 839802L, 855524L, 873527L, 885409L, 894218L, 928026L, 
955389L, 957206L, 957759L, 962490L, 968728L, 969005L, 971179L, 
981621L, 965873L, 967416L, 975424L, 789331L, 805933L, 826523L, 
832929L, 838607L, 826523L, 832929L, 838607L, 843618L, 852125L, 
876406L, 885650L, 888712L, 903303L, 796882L, 830271L, 831487L, 
834598L, 836364L, 839802L, 855524L, 873527L, 885409L, 894218L, 
957759L, 962490L, 968728L, 969005L, 976863L, 952797L, 965873L, 
789331L, 805933L, 826523L, 832929L, 838607L, 826523L, 832929L, 
838607L, 841903L, 843618L, 852125L, 876406L, 879972L, 885650L, 
888712L, 796882L, 827911L, 830271L, 831487L, 834598L, 836364L, 
839802L, 855524L, 873527L, 885409L, 894218L, 955389L, 957206L, 
957759L, 959200L, 962490L, 968728L, 971179L, 981621L, 952797L, 
965873L, 967416L, 789331L, 805933L, 826523L, 838607L, 826523L, 
838607L, 843618L, 852125L, 876406L, 879972L, 885650L, 888712L, 
903303L, 796882L, 827911L, 830271L, 834598L, 836364L, 839802L, 
855524L, 885409L, 894218L, 956952L, 957206L, 957759L, 959200L, 
962490L, 968728L, 981621L, 952797L, 965873L, 967416L, 789331L, 
805933L, 838607L, 838607L, 841903L, 843618L, 852125L, 876406L, 
879972L, 885650L, 888712L, 903303L, 796882L, 830271L, 831487L, 
834598L, 836364L, 839802L, 855524L, 873527L, 885409L, 894218L, 
955389L, 956952L, 957206L, 957759L, 968728L, 969005L, 971179L, 
976863L, 981621L, 952797L, 965873L, 967416L, 975424L, 789331L, 
805933L, 826523L, 838607L, 826523L, 838607L, 841903L, 843618L, 
852125L, 876406L, 879972L, 885650L, 888712L, 903303L, 796882L, 
831487L, 836364L, 839802L, 855524L, 873527L, 885409L, 955389L, 
956952L, 957206L, 957759L, 959200L, 962490L, 968728L, 969005L, 
971179L, 976863L, 981621L, 952797L, 965873L, 967416L, 789331L, 
838607L, 838607L, 841903L, 843618L, 876406L, 879972L, 885650L, 
888712L, 903303L, 796882L, 830271L, 831487L, 836364L, 839802L, 
855524L, 955389L, 957206L, 957759L, 962490L, 968728L, 965873L
), Type = c("SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "FYS", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "FYS", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "FYS", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "FYS", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "FYS", "FYS", "FYS", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", "FYS", 
"FYS", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", 
"SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "SNR", "FYS", 
"FYS", "FYS", "FYS", "FYS", "FYS"), timePeriod = c("Rt1", "Rt1", 
"Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", 
"Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", "Rt1", 
"Rt1", "Rt1", "Rt1", "Rt1", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", 
"Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", 
"Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", 
"Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", "Rt10", 
"Rt10", "Rt10", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", 
"Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", 
"Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", 
"Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt11", "Rt2", 
"Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", 
"Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", 
"Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", 
"Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", "Rt2", 
"Rt2", "Rt2", "Rt2", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", 
"Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", 
"Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", 
"Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt3", 
"Rt3", "Rt3", "Rt3", "Rt3", "Rt3", "Rt4", "Rt4", "Rt4", "Rt4", 
"Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", 
"Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", 
"Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", "Rt4", 
"Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", 
"Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", 
"Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", 
"Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", "Rt5", 
"Rt5", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", 
"Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", 
"Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", 
"Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt6", "Rt7", "Rt7", "Rt7", 
"Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", 
"Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", 
"Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt7", 
"Rt7", "Rt7", "Rt7", "Rt7", "Rt7", "Rt8", "Rt8", "Rt8", "Rt8", 
"Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", 
"Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", 
"Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", "Rt8", 
"Rt8", "Rt8", "Rt8", "Rt8", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", 
"Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", 
"Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9", "Rt9"), weeks = structure(c(5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L), .Label = c("Apr5", "Feb1", "Feb15", "Feb8", "Jan11", 
"Jan25", "Mar1", "Mar15", "Mar22", "Mar29", "Mar8"), class = "factor"), 
    Rating = c(4L, 5L, 4L, 4L, 5L, 4L, 4L, 5L, 2L, 4L, 3L, 3L, 
    3L, 4L, 4L, 3L, 4L, 4L, 4L, 3L, 5L, 4L, 1L, 4L, 5L, 5L, 5L, 
    5L, 4L, 4L, 4L, 5L, 5L, 3L, 3L, 5L, 4L, 3L, 1L, 4L, 4L, 4L, 
    4L, 5L, 4L, 4L, 4L, 4L, 1L, 5L, 4L, 5L, 4L, 5L, 3L, 5L, 4L, 
    4L, 4L, 4L, 4L, 3L, 5L, 3L, 4L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 
    4L, 5L, 4L, 4L, 5L, 5L, 5L, 1L, 5L, 5L, 5L, 4L, 4L, 4L, 3L, 
    4L, 5L, 3L, 4L, 5L, 4L, 4L, 4L, 3L, 4L, 4L, 1L, 3L, 5L, 4L, 
    4L, 5L, 4L, 3L, 5L, 3L, 4L, 4L, 4L, 4L, 5L, 3L, 5L, 5L, 5L, 
    4L, 4L, 4L, 5L, 5L, 4L, 4L, 4L, 4L, 3L, 4L, 5L, 3L, 4L, 5L, 
    4L, 5L, 4L, 4L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 1L, 4L, 
    4L, 4L, 4L, 5L, 4L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 3L, 
    5L, 4L, 4L, 4L, 5L, 4L, 4L, 5L, 5L, 4L, 4L, 4L, 4L, 3L, 3L, 
    5L, 5L, 4L, 4L, 1L, 4L, 4L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 4L, 
    5L, 3L, 4L, 4L, 2L, 5L, 4L, 2L, 5L, 4L, 5L, 4L, 4L, 4L, 4L, 
    4L, 3L, 3L, 5L, 4L, 4L, 3L, 5L, 4L, 4L, 4L, 5L, 4L, 4L, 4L, 
    4L, 5L, 3L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 5L, 4L, 5L, 5L, 
    3L, 4L, 4L, 4L, 4L, 3L, 5L, 4L, 5L, 4L, 3L, 2L, 4L, 4L, 5L, 
    3L, 5L, 4L, 3L, 4L, 3L, 5L, 4L, 4L, 4L, 5L, 4L, 5L, 5L, 4L, 
    5L, 3L, 4L, 4L, 5L, 5L, 3L, 4L, 5L, 4L, 4L, 3L, 3L, 5L, 4L, 
    4L, 5L, 3L, 5L, 4L, 4L, 1L, 5L, 5L, 4L, 5L, 4L, 3L, 5L, 3L, 
    4L, 4L, 5L, 5L, 5L, 5L, 3L, 5L, 4L, 4L, 4L, 5L, 4L, 3L, 1L, 
    5L, 3L, 4L, 4L, 4L, 5L, 3L, 4L, 5L, 4L, 4L, 4L, 3L, 5L, 5L, 
    4L, 5L, 5L, 3L, 5L, 4L, 4L, 4L, 4L, 4L, 3L, 4L, 5L, 5L, 3L, 
    3L, 5L, 5L, 3L, 3L, 5L, 4L, 5L, 4L, 1L, 2L, 4L)), .Names = c("Student", 
"Type", "timePeriod", "weeks", "Rating"), row.names = c(1L, 2L, 
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 
32L, 33L, 34L, 36L, 38L, 41L, 42L, 43L, 45L, 47L, 50L, 54L, 55L, 
56L, 57L, 58L, 59L, 60L, 61L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 
71L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 83L, 84L, 85L, 86L, 88L, 
89L, 90L, 91L, 93L, 94L, 96L, 97L, 98L, 99L, 100L, 103L, 104L, 
105L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 120L, 
121L, 124L, 125L, 126L, 128L, 129L, 133L, 134L, 135L, 136L, 137L, 
138L, 139L, 140L, 141L, 142L, 144L, 145L, 146L, 147L, 148L, 149L, 
150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 
161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 
172L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 
186L, 187L, 188L, 189L, 190L, 192L, 193L, 194L, 195L, 196L, 197L, 
198L, 199L, 200L, 201L, 202L, 203L, 204L, 206L, 208L, 209L, 211L, 
212L, 213L, 214L, 216L, 218L, 219L, 220L, 221L, 222L, 223L, 224L, 
225L, 226L, 227L, 228L, 230L, 231L, 232L, 234L, 235L, 236L, 237L, 
239L, 240L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 253L, 255L, 
256L, 257L, 259L, 261L, 262L, 265L, 266L, 267L, 268L, 269L, 270L, 
271L, 272L, 273L, 274L, 275L, 276L, 277L, 278L, 279L, 281L, 282L, 
283L, 284L, 285L, 286L, 287L, 288L, 289L, 290L, 291L, 294L, 296L, 
297L, 298L, 299L, 300L, 302L, 304L, 305L, 306L, 307L, 309L, 310L, 
311L, 313L, 314L, 316L, 318L, 319L, 320L, 321L, 322L, 323L, 324L, 
325L, 326L, 327L, 329L, 330L, 331L, 332L, 334L, 335L, 339L, 340L, 
341L, 342L, 343L, 344L, 348L, 349L, 350L, 351L, 353L, 354L, 357L, 
360L, 361L, 362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L, 371L, 
372L, 373L, 374L, 375L, 376L, 377L, 378L, 379L, 382L, 383L, 384L, 
385L, 388L, 389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 
398L, 399L, 401L, 402L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 
411L, 412L, 413L, 416L, 418L, 419L, 420L, 421L, 422L, 426L, 427L, 
428L, 429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L, 
439L, 441L, 445L, 448L, 449L, 450L, 452L, 453L, 454L, 455L, 456L, 
457L, 459L, 460L, 462L, 463L, 464L, 470L, 472L, 473L, 475L, 476L, 
482L), class = "data.frame", na.action = structure(c(17L, 18L, 
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 
35L, 37L, 39L, 40L, 44L, 46L, 48L, 49L, 51L, 52L, 53L, 62L, 63L, 
72L, 73L, 74L, 82L, 87L, 92L, 95L, 101L, 102L, 106L, 116L, 117L, 
118L, 119L, 122L, 123L, 127L, 130L, 131L, 132L, 143L, 173L, 174L, 
175L, 191L, 205L, 207L, 210L, 215L, 217L, 229L, 233L, 238L, 248L, 
249L, 250L, 251L, 252L, 254L, 258L, 260L, 263L, 264L, 280L, 292L, 
293L, 295L, 301L, 303L, 308L, 312L, 315L, 317L, 328L, 333L, 336L, 
337L, 338L, 345L, 346L, 347L, 352L, 355L, 356L, 358L, 359L, 370L, 
380L, 381L, 386L, 387L, 400L, 403L, 414L, 415L, 417L, 423L, 424L, 
425L, 440L, 442L, 443L, 444L, 446L, 447L, 451L, 458L, 461L, 465L, 
466L, 467L, 468L, 469L, 471L, 474L, 477L, 478L, 479L, 480L, 481L, 
483L, 484L), .Names = c("17", "18", "19", "20", "21", "22", "23", 
"24", "25", "26", "27", "28", "29", "30", "31", "35", "37", "39", 
"40", "44", "46", "48", "49", "51", "52", "53", "62", "63", "72", 
"73", "74", "82", "87", "92", "95", "101", "102", "106", "116", 
"117", "118", "119", "122", "123", "127", "130", "131", "132", 
"143", "173", "174", "175", "191", "205", "207", "210", "215", 
"217", "229", "233", "238", "248", "249", "250", "251", "252", 
"254", "258", "260", "263", "264", "280", "292", "293", "295", 
"301", "303", "308", "312", "315", "317", "328", "333", "336", 
"337", "338", "345", "346", "347", "352", "355", "356", "358", 
"359", "370", "380", "381", "386", "387", "400", "403", "414", 
"415", "417", "423", "424", "425", "440", "442", "443", "444", 
"446", "447", "451", "458", "461", "465", "466", "467", "468", 
"469", "471", "474", "477", "478", "479", "480", "481", "483", 
"484"), class = "omit"))

1 个答案:

答案 0 :(得分:0)

问题在于您的数据。弗里德曼的测试类似于经典的平衡双因素方差分析,但您的数据并不均衡。

> xtabs(~ Student + weeks, data=Qr)
        weeks
Student  Apr5 Feb1 Feb15 Feb8 Jan11 Jan25 Mar1 Mar15 Mar22 Mar29 Mar8
  789331    1    1     1    1     1     1    1     1     1     1    1
  796882    1    1     1    1     0     1    1     1     1     1    1
  805933    1    1     1    1     1     1    1     1     0     0    1
  826523    2    2     2    2     2     2    2     2     0     2    0
  827911    0    1     1    0     0     1    1     0     0     0    0
  830271    1    1     1    1     0     1    1     0     1     0    1
  831487    1    1     1    1     0     1    0     1     1     1    1
  832929    0    2     2    2     2     2    0     0     0     0    0
  834598    1    1     1    1     0     1    1     0     0     1    1
  836364    1    1     1    1     0     1    1     1     1     1    1
  838607    2    2     2    2     2     2    2     2     2     0    2
  839802    1    1     1    1     0     1    1     1     1     1    1
  841903    1    1     1    0     1     1    0     1     1     0    1
  843618    1    1     1    1     1     1    1     1     1     1    1
  852125    1    1     1    1     1     0    1     1     0     1    1
  855524    1    1     1    1     0     1    1     1     1     1    1
  873527    1    1     1    1     0     1    0     1     0     1    1
  876406    1    1     1    1     1     1    1     1     1     1    1
  879972    0    1     1    0     1     1    1     1     1     1    1
  885409    1    1     1    1     0     1    1     1     0     1    1
  885650    0    1     1    1     1     1    1     1     1     1    1
  888712    1    0     1    1     1     1    1     1     1     1    1
  894218    1    1     1    1     0     1    1     0     0     1    1
  903303    1    1     0    1     1     1    1     1     1     1    1
  928026    0    1     0    0     0     1    0     0     0     0    0
  932196    0    0     0    0     0     1    0     0     0     0    0
  952797    1    0     1    1     1     0    1     1     0     1    1
  955389    0    1     1    0     0     1    0     1     1     0    1
  956952    0    0     0    0     0     1    1     1     0     1    1
  957206    1    1     1    0     1     1    1     1     1     1    1
  957759    1    1     1    1     1     1    1     1     1     1    1
  959200    0    0     1    0     1     1    1     1     0     1    0
  962490    0    1     1    1     0     1    1     1     1     1    0
  965873    0    1     1    1     1     0    1     1     1     1    1
  967416    0    1     1    0     1     0    1     1     0     0    1
  968728    1    1     1    1     1     1    1     1     1     1    1
  969005    1    1     0    1     0     1    0     1     0     1    1
  971179    1    1     1    0     1     1    0     1     0     0    1
  975424    0    1     0    0     0     1    0     0     0     1    1
  976863    0    0     0    1     0     1    0     1     0     1    1
  981621    1    1     1    0     0     1    1     1     0     1    1

对于传统的弗里德曼测试,你应该对该矩阵中的所有条目都有相同的数字。