多次进行同一次测试时有点问题。
我使用friedman.test来测试配对样本的变化。函数本身没有问题,我使用脚本为每列提供了预期的结果:
friedman.test(Variable ~ Time | Patient, data=table1)
然而,我已经为每位患者测量了几个变量(在几个时间点)。我可以使用上面的脚本对每个变量进行测试,但我想在一组选定的变量上按顺序自动执行。我尝试在向量或列表中输入我想要测试的变量,并使用向量/列表作为“变量”参数,但它不起作用。
有人能指出我正确的方向来进行这种类型的循环吗?
谢谢! SEB
答案 0 :(得分:0)
函数as.formula()
是关键。我将用一个小例子来解释。
来自内置的warpbreaks数据集(请参阅?friedman.test
):
wb <- aggregate(warpbreaks$breaks,
by = list(w = warpbreaks$wool,
t = warpbreaks$tension),
FUN = mean)
> friedman.test(x ~ w | t, data = wb)
Friedman rank sum test
data: x and w and t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
现在让我们假设为了简单起见,我们要在循环而不是x中测试3个变量:
(对于这个例子,我每次都会使用x变量,因为它是一个演示)
myvariables <- c('x','x','x') #this is your vector with all of the variables you will use
for ( i in myvariables) { #and this block is the loop
formula_text <- sprintf('%s ~ w | t', i) #writes the formula as text
a <- as.formula(formula_text) #converts text to formula
print(friedman.test(a, data = wb)) #runs as wanted!
}
以上循环输出:
Friedman rank sum test
data: x and w and t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
Friedman rank sum test
data: x and w and t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
Friedman rank sum test
data: x and w and t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
希望它有所帮助!
答案 1 :(得分:0)
尝试以下方法:
varnames <- c("Variable1","Variable2")
for (curvar in varnames) {
print(curvar)
print(friedman.test(table1[,curvar] ~ Time | Patient, data=table1)
}