说我生成一个df,如下所示
testdf = pd.DataFrame(np.random.randn(4,4),index= pd.date_range("20170101",periods=4),columns =list("ABCD"))
testdf
Out[40]:
A B C D
2017-01-01 0.084624 -0.371352 -1.013843 -1.102199
2017-01-02 0.390855 -0.519623 0.241092 -1.474969
2017-01-03 0.129163 -0.183547 -1.333859 -0.864320
2017-01-04 1.265360 -0.260505 0.633058 -0.077758
然后我创建一个mulit-index,如下所示
index = pd.MultiIndex.from_arrays([list("ABCD"),("one","one","two","two")],names=['letter','number'])
testdf.columns = index
testdf
Out[44]:
letter A B C D
number one one two two
2017-01-01 0.084624 -0.371352 -1.013843 -1.102199
2017-01-02 0.390855 -0.519623 0.241092 -1.474969
2017-01-03 0.129163 -0.183547 -1.333859 -0.864320
2017-01-04 1.265360 -0.260505 0.633058 -0.077758
现在我如何按number
分组?
我尝试按以下分组。
testdf.groupby('number')
会抛出以下错误。
KeyError: 'number'
答案 0 :(得分:2)
将groupby
与参数axis=1
一起用于分组,定义级别,然后添加聚合函数,例如sum
,mean
:
df = testdf.groupby(axis=1, level=1).sum()
或者:
df = testdf.groupby(axis=1, level='number').sum()