规范化Keras中神经网络的验证集

时间:2017-07-25 11:15:50

标签: python machine-learning neural-network keras normalization

因此,我理解归一化对训练神经网络很重要。

我也理解我必须使用训练集中的参数对验证和测试集进行标准化(参见例如此讨论:https://stats.stackexchange.com/questions/77350/perform-feature-normalization-before-or-within-model-validation

我的问题是:我如何在Keras做到这一点?

我目前正在做的是:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping

def Normalize(data):
    mean_data = np.mean(data)
    std_data = np.std(data)
    norm_data = (data-mean_data)/std_data
    return norm_data

input_data, targets = np.loadtxt(fname='data', delimiter=';')
norm_input = Normalize(input_data)

model = Sequential()
model.add(Dense(25, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

early_stopping = EarlyStopping(monitor='val_acc', patience=50) 
model.fit(norm_input, targets, validation_split=0.2, batch_size=15, callbacks=[early_stopping], verbose=1)

但是在这里,我首先规范化数据w.r.t.整个数据集和然后分割验证集,根据上述讨论,这是错误的。

保存训练集的平均值和标准偏差(training_mean和training_std)并不是一件大事,但是如何分别使用training_mean和training_std对验证集进行规范化?

2 个答案:

答案 0 :(得分:2)

以下代码完全符合您的要求:

import numpy as np
def normalize(x_train, x_test):
    mu = np.mean(x_train, axis=0)
    std = np.std(x_train, axis=0)
    x_train_normalized = (x_train - mu) / std
    x_test_normalized = (x_test - mu) / std
    return x_train_normalized, x_test_normalized

然后你可以像这样使用keras:

from keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
x_train, x_test = normalize(x_train, x_test)

Wilmar的回答是不正确的。

答案 1 :(得分:0)

在使用sklearn.model_selection.train_test_split拟合模型之前,您可以手动将数据拆分为训练和测试数据集。然后,分别规范化训练和测试数据,并使用model.fit参数调用validation_data

代码示例

import numpy as np
from sklearn.model_selection import train_test_split

data = np.random.randint(0,100,200).reshape(20,10)
target = np.random.randint(0,1,20)

X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)

X_train = Normalize(X_train)
X_test = Normalize(X_test)

model.fit(X_train, y_train, validation_data=(X_test,y_test), batch_size=15, callbacks=[early_stopping], verbose=1)