运行keras示例脚本时遇到以下错误:
C:\Users\johnd\AppData\Local\Programs\Python\Python35\lib\site-packages\keras\preprocessing\image.py:653: UserWarning: Expected input to be images (as Numpy array) following the data format convention "channels_first" (channels on axis 1), i.e. expected either 1, 3 or 4 channels on axis 1. However, it was passed an array with shape (60000, 1, 28, 28) (1 channels).
' (' + str(x.shape[self.channel_axis]) + ' channels).')
这是我的剧本:
from keras.datasets import mnist
from keras.preprocessing.image import ImageDataGenerator
from matplotlib import pyplot
from keras import backend as K
K.set_image_dim_ordering('th')
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape to be [samples][pixels][width][height]
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28)
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28)
# convert from int to float
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# define data preparation
datagen = ImageDataGenerator(zca_whitening=True)
# fit parameters from data
datagen.fit(X_train)
# configure batch size and retrieve one batch of images
for X_batch, y_batch in datagen.flow(X_train, y_train, batch_size=9):
# create a grid of 3x3 images
for i in range(0, 9):
pyplot.subplot(330 + 1 + i)
pyplot.imshow(X_batch[i].reshape(28, 28), cmap=pyplot.get_cmap('gray'))
# show the plot
pyplot.show()
break
你能告诉我出了什么问题吗?
谢谢。
答案 0 :(得分:0)
这不是错误,而是警告 - 我猜你没有提到其余的代码运行正常;这是我在运行你的脚本后得到的:
X_train.shape
(60000, 1, 28, 28)
并发出类似警告:
/var/venv/tsats/local/lib/python2.7/site-packages/keras/preprocessing/image.py:648:
UserWarning: Expected input to be images (as Numpy array) following the data format
convention "channels_first" (channels on axis 1), i.e. expected either 1, 3 or 4 channels on
axis 1. However, it was passed an array with shape (60000, 1, 28, 28) (1 channels). ' (' + str(x.shape[self.channel_axis]) + ' channels).')
仔细检查警告显示它是荒谬的:它要求通道位于轴1上(它们是)并且它们具有{1, 3, 4}
中的值(它们的有效值确实为1)。显然这是一个Keras错误 - 我打开了一个issue - 但它不会影响代码的其余部分和结果。
更新:根据Keras Github中的response问题,这已经在主人身上修好了(尽管我自己还没有经过测试)。