当我尝试按批次获取批次时,我的数据形状为(60000, 1, 28, 28)
:
gen = image.ImageDataGenerator()
train_batches = gen.flow(x_train, y_train, batch_size=64)
我收到错误:
ValueError: NumpyArrayIterator is set to use the data format convention "channels_last" (channels on axis 3), i.e. expected either 1, 3 or 4 channels on axis 3. However, it was passed an array with shape (60000, 1, 28, 28) (28 channels).
为了摆脱它,我做:
train_batches = gen.flow(np.swapaxes(x_train,1,3), y_train, batch_size=64)
虽然这确实消除了上述错误,但它会生成以下错误:
ValueError: Error when checking input: expected lambda_13_input to have shape (None, 1, 28, 28) but got array with shape (64, 28, 28, 1)
做的时候:
lin_model.fit_generator(train_batches, train_batches.n, nb_epoch=1,
validation_data= test_batches, nb_val_samples=test_batches.n)
我确保添加到我的代码排序说明符中:
import keras.backend as k
k.image_dim_ordering() == 'th'
完整的跟踪是:
ValueError Traceback (most recent call last)
<ipython-input-138-f8ea3b9faad4> in <module>()
----> 1 training_routine(lin_model)
<ipython-input-136-8b3171cd58ae> in training_routine(model)
2 model.optimizer.lr = 0.001
3 model.fit_generator(train_batches, train_batches.n, nb_epoch=1,
----> 4 validation_data= test_batches, nb_val_samples=test_batches.n)
5 model.optimizer.lr = 0.1
6 model.fit_generator(train_batches, train_batches.n, nb_epoch=1,
/home/matar/anaconda2/lib/python2.7/site-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
85 warnings.warn('Update your `' + object_name +
86 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 87 return func(*args, **kwargs)
88 wrapper._original_function = func
89 return wrapper
/home/matar/anaconda2/lib/python2.7/site-packages/keras/models.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, initial_epoch)
1115 workers=workers,
1116 use_multiprocessing=use_multiprocessing,
-> 1117 initial_epoch=initial_epoch)
1118
1119 @interfaces.legacy_generator_methods_support
/home/matar/anaconda2/lib/python2.7/site-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
85 warnings.warn('Update your `' + object_name +
86 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 87 return func(*args, **kwargs)
88 wrapper._original_function = func
89 return wrapper
/home/matar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, initial_epoch)
1838 outs = self.train_on_batch(x, y,
1839 sample_weight=sample_weight,
-> 1840 class_weight=class_weight)
1841
1842 if not isinstance(outs, list):
/home/matar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in train_on_batch(self, x, y, sample_weight, class_weight)
1557 sample_weight=sample_weight,
1558 class_weight=class_weight,
-> 1559 check_batch_axis=True)
1560 if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
1561 ins = x + y + sample_weights + [1.]
/home/matar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in _standardize_user_data(self, x, y, sample_weight, class_weight, check_batch_axis, batch_size)
1232 self._feed_input_shapes,
1233 check_batch_axis=False,
-> 1234 exception_prefix='input')
1235 y = _standardize_input_data(y, self._feed_output_names,
1236 output_shapes,
/home/matar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in _standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
138 ' to have shape ' + str(shapes[i]) +
139 ' but got array with shape ' +
--> 140 str(array.shape))
141 return arrays
142
ValueError: Error when checking input: expected lambda_13_input to have shape (None, 1, 28, 28) but got array with shape (64, 28, 28, 1)
答案 0 :(得分:1)
在keras.json中将"image_data_format":"channels_last"
更改为"image_data_format":"channels_first"
,可以通过在终端输入whereis keras.json
找到。
设置为channels_last
以适应张量流作为后端,但因此在此使用theano,应相应更改。