我有一个超过15000行的数据框对象df
,如:
anime_id name genre rating
1234 Kimi no nawa Romance, Comedy 9.31
5678 Stiens;Gate Sci-fi 8.92
我正在尝试使用特定的anime_id找到该行。
a_id = "5678"
temp = (df.query("anime_id == "+a_id).genre)
我只是想知道这个搜索是在恒定时间(如字典)还是线性时间(如列表)中完成的。
答案 0 :(得分:4)
这是一个非常有趣的问题!
我认为这取决于以下几个方面:
按索引访问单行(索引已排序且唯一)应具有运行时O(m)
,其中m << n_rows
按索引访问单行(索引不唯一且未排序)应具有运行时O(n_rows)
按索引访问单行(索引不是唯一的并且已排序)应该具有运行时O(m)
,其中`m&lt; n_rows)
通过布尔索引访问行(独立于索引)shoudl具有运行时O(n_rows)
演示:
索引已排序且唯一:
In [49]: df = pd.DataFrame(np.random.rand(10**5,6), columns=list('abcdef'))
In [50]: %timeit df.loc[random.randint(0, 10**4)]
The slowest run took 27.65 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 331 µs per loop
In [51]: %timeit df.iloc[random.randint(0, 10**4)]
1000 loops, best of 3: 275 µs per loop
In [52]: %timeit df.query("a > 0.9")
100 loops, best of 3: 7.84 ms per loop
In [53]: %timeit df.loc[df.a > 0.9]
100 loops, best of 3: 2.96 ms per loop
索引未排序且不唯一:
In [54]: df = pd.DataFrame(np.random.rand(10**5,6), columns=list('abcdef'), index=np.random.randint(0, 10000, 10**5))
In [55]: %timeit df.loc[random.randint(0, 10**4)]
100 loops, best of 3: 12.3 ms per loop
In [56]: %timeit df.iloc[random.randint(0, 10**4)]
1000 loops, best of 3: 262 µs per loop
In [57]: %timeit df.query("a > 0.9")
100 loops, best of 3: 7.78 ms per loop
In [58]: %timeit df.loc[df.a > 0.9]
100 loops, best of 3: 2.93 ms per loop
索引不是唯一的,已排序:
In [64]: df = pd.DataFrame(np.random.rand(10**5,6), columns=list('abcdef'), index=np.random.randint(0, 10000, 10**5)).sort_index()
In [65]: df.index.is_monotonic_increasing
Out[65]: True
In [66]: %timeit df.loc[random.randint(0, 10**4)]
The slowest run took 9.70 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 478 µs per loop
In [67]: %timeit df.iloc[random.randint(0, 10**4)]
1000 loops, best of 3: 262 µs per loop
In [68]: %timeit df.query("a > 0.9")
100 loops, best of 3: 7.81 ms per loop
In [69]: %timeit df.loc[df.a > 0.9]
100 loops, best of 3: 2.95 ms per loop
答案 1 :(得分:3)
我不能告诉你它是如何实现的,但经过一点点测试后。似乎数据帧布尔掩码更像线性。
>>> timeit.timeit('dict_data[key]',setup=setup,number = 10000)
0.0005770014540757984
>>> timeit.timeit('df[df.val==key]',setup=setup,number = 10000)
17.583375428628642
>>> timeit.timeit('[i == key for i in dict_data ]',setup=setup,number = 10000)
16.613936403242406
答案 2 :(得分:1)
您应该注意,当索引唯一时,即使iloc的速度也比hashmap慢2个数量级:
df = pd.DataFrame(np.random.randint(0, 10**7, 10**5), columns=['a'])
%timeit df.iloc[random.randint(0,10**5)]
10000 loops, best of 3: 51.5 µs per loop
s = set(np.random.randint(0, 10**7, 10**5))
%timeit random.randint(0,10**7) in s
The slowest run took 9.70 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 615 ns per loop