是否可以在咖啡中使用任意图像尺寸?

时间:2017-07-19 09:06:14

标签: machine-learning neural-network computer-vision deep-learning caffe

我知道caffe有所谓的空间金字塔层,它使网络能够使用任意图像大小。我遇到的问题是,网络似乎拒绝,在一个批次中使用任意图像大小。我错过了什么或这是真正的问题吗?。

我的train_val.prototxt:

name: "digits"
layer {
  name: "input"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "/Users/rvaldez/Documents/Datasets/Digits/SeperatedProviderV3_1020_batchnormalizedV2AndSPP/1/caffe/train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "input"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "/Users/rvaldez/Documents/Datasets/Digits/SeperatedProviderV3_1020_batchnormalizedV2AndSPP/1/caffe/test_lmdb"
    batch_size: 10
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "bn1"
  type: "BatchNorm"
  bottom: "pool1"
  top: "bn1"
  batch_norm_param {
    use_global_stats: false
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  include {
    phase: TRAIN
  }
}
layer {
  name: "bn1"
  type: "BatchNorm"
  bottom: "pool1"
  top: "bn1"
  batch_norm_param {
    use_global_stats: true
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  include {
    phase: TEST
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "bn1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "spatial_pyramid_pooling"
  type: "SPP"
  bottom: "conv2"
  top: "pool2"
  spp_param {
    pyramid_height: 2
  }
} 
layer {
  name: "bn2"
  type: "BatchNorm"
  bottom: "pool2"
  top: "bn2"
  batch_norm_param {
    use_global_stats: false
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  include {
    phase: TRAIN
  }
}
layer {
  name: "bn2"
  type: "BatchNorm"
  bottom: "pool2"
  top: "bn2"
  batch_norm_param {
    use_global_stats: true
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  param {
    lr_mult: 0
  }
  include {
    phase: TEST
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "bn2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}

Link关于后续问题的另一个问题。

1 个答案:

答案 0 :(得分:4)

你在这里混合了几个概念。

net 可以接受任意输入形状吗?
好吧,并非所有网都可以使用任何输入形状。在许多情况下,网络仅限于训练它的输入形状 在大多数情况下,当使用完全连接的图层("InnerProduct")时,这些图层需要精确输入尺寸,从而改变输入形状"中断"这些图层并将网络限制为特定的,预定义的输入形状 另一方面"完全卷积网"在输入形状方面更灵活,通常可以处理任何输入形状。

可以在批量培训期间更改输入形状吗?
即使你的网络架构允许任意输入形状,你也不能在批量训练期间使用你想要的任何形状,因为单个批次中所有样本的输入形状必须相同:如何连接27x27另一个17x17形状的图像?

似乎你得到的错误来自"Data"层,它正在努力将不同形状的样本连接成一个批处理。

您可以通过设置batch_size: 1一次处理一个样本并在solver.prototxt中设置iter_size: 32来平均超过32个样本的渐变来获得SGD效果{{1}来解决此问题}}