我试图通过Apache Spark master从Mongo DB读取数据。
我使用3台机器:
应用程序(M3)正在连接到spark master,如下所示:
_sparkSession = SparkSession.builder.master(masterPath).appName(appName)\
.config("spark.mongodb.input.uri", "mongodb://10.0.3.150/db1.data.coll")\
.config("spark.mongodb.output.uri", "mongodb://10.0.3.150/db1.data.coll").getOrCreate()
应用程序(M3)正在尝试从DB中读取数据:
sqlContext = SQLContext(_sparkSession.sparkContext)
df = sqlContext.read.format("com.mongodb.spark.sql.DefaultSource").option("uri","mongodb://user:pass@10.0.3.150/db1.data?readPreference=primaryPreferred").load()
但是因为这个例外而失败:
py4j.protocol.Py4JJavaError: An error occurred while calling o56.load.
: java.lang.ClassNotFoundException: Failed to find data source: com.mongodb.spark.sql.DefaultSource. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:594)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:325)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: com.mongodb.spark.sql.DefaultSource.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$25$$anonfun$apply$13.apply(DataSource.scala:579)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$25$$anonfun$apply$13.apply(DataSource.scala:579)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$25.apply(DataSource.scala:579)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$25.apply(DataSource.scala:579)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:579)
... 16 more
答案 0 :(得分:7)
Spark无法找到com.mongodb.spark.sql.DefaultSource
包,因此会显示错误消息。
一切,其他看起来不错只需要包含Mongo Spark包:
> $SPARK_HOME/bin/pyspark --packages org.mongodb.spark:mongo-spark-connector_2.11:2.2.0
或确保jar文件位于正确的路径上。
请务必查看您的Spark版本所需的Mongo-Spark软件包版本:https://spark-packages.org/package/mongodb/mongo-spark
答案 1 :(得分:3)
我是pyspark用户,这是我的代码的样子,并且可以正常工作:
from pyspark.sql import SparkSession
spark = SparkSession\
.builder\
.master('local')\
.config('spark.mongodb.input.uri', 'mongodb://user:password@ip.x.x.x:27017/database01.data.coll')\
.config('spark.mongodb.output.uri', 'mongodb://user:password@ip.x.x.x:27017/database01.data.coll')\
.config('spark.jars.packages', 'org.mongodb.spark:mongo-spark-connector_2.11:2.3.1')\
.getOrCreate()
df01 = spark.read\
.format("com.mongodb.spark.sql.DefaultSource")\
.option("database","database01")\
.option("collection", "collection01")\
.load()
df01.write.format("com.mongodb.spark.sql.DefaultSource")\
.mode("overwrite")\
.option("database","database01")\
.option("collection", "collection02")\
.save()
答案 2 :(得分:1)
我很难配置到CosmosDB(API MongoDB)的Spark连接,因此我决定发布对我有用的代码。
我通过Databricks笔记本使用了Spark 2.4.0。
from pyspark.sql import SparkSession
# Connect to CosmosDB to write on the collection
userName = "userName"
primaryKey = "myReadAndWritePrimaryKey"
host = "ipAddress"
port = "10255"
database = "dbName"
collection = "collectionName"
# Structure the connection
connectionString = "mongodb://{0}:{1}@{2}:{3}/{4}.{5}?ssl=true&replicaSet=globaldb".format(userName, primaryKey, host, port, database, collection)
spark = SparkSession\
.builder\
.config('spark.mongodb.input.uri', connectionString)\
.config('spark.mongodb.output.uri', connectionString)\
.config('spark.jars.packages', 'org.mongodb.spark:mongo-spark-connector_2.11:2.3.1')\
.getOrCreate()
# Reading from CosmosDB
df = spark.read\
.format("com.mongodb.spark.sql.DefaultSource")\
.option("uri", connectionString)\
.option("database", database)\
.option("collection", collection)\
.load()
# Writing on CosmosDB (Appending new information without replacing documents)
dfToAppendOnCosmosDB.write.format("com.mongodb.spark.sql.DefaultSource")\
.mode("append")\
.option("uri", connectionString)\
.option("replaceDocument", False)\
.option("maxBatchSize", 100)\
.option("database", database)\
.option("collection", collection)\
.save()
我在link找到了用于配置连接器的选项。