尝试在sci-kit中生成决策树。我有一个CSV文件,作为我的sci-kit程序的输入。当我打印数据集长度为502时,数据集形状为(502,1)。只有一个数组。
我如何适应决策树并获得结果,不确定我是否正确执行,下面是我的代码。
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
input_file = "output.csv"
# for tab delimited use:
df = pd.read_csv(input_file, header = 0, delimiter = "\t")
# printing the original column values in a python list
print(df.values)
print("DataSet Length :",len(df))
print("DataSet Shape :",df.shape)
# Assigning values to an array
X=df.values[:,0]
# test train the the data
X_train,X_test=train_test_split(X,test_size=0.3,random_state=100)
# Passing to the Decision Tree Classifier, with entropy criterion
clf_entropy = DecisionTreeClassifier(criterion = "entropy", rando
m_state = 100,max_depth=3, min_samples_leaf=5)
# Fitting the data to the classifier
clf_entropy.fit(X_train)
CSV文件位于以下链接
https://drive.google.com/file/d/0B3XlF206d5UrVnh6QS1LRW0xT0U/view?usp=sharing
使用excel下载并打开。请参阅以下sci-kit文档以供参考。
答案 0 :(得分:2)
为了适应决策树分类器,您的训练和测试数据需要有标签。使用这些标签,您可以适应树。以下是sklearn website的示例:
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
问题是,在您的代码中,您只有X
个值,没有标签(Y
值)。所以你不能适应树。