我编写了一个函数,该函数接受数据集(excel / pandas)和一些值,然后使用决策树分类器预测结果。我已经用sklearn完成了。 您能帮我这个忙吗?我已经浏览了整个网站和这个网站,但找不到有效的答案。 我试图这样做,但是它不起作用:
from sklearn.metrics import accuracy_score
score = accuracy_score(variable_list, result_list)
这是我得到的错误:
ValueError: Classification metrics can't handle a mix of continuous-multioutput and multiclass targets
这是代码(为了准确起见,我删除了代码)
import pandas as pd
import math
import xlrd
from sklearn.model_selection import train_test_split
from sklearn import tree
def predict_concrete_class(input_data, cement, blast_fur_slug,fly_ash,
water, superpl, coarse_aggr, fine_aggr, days):
data_for_tree = concrete_strenght_class(input_data)
variable_list = []
result_list = []
for index, row in data_for_tree.iterrows():
variable = row.tolist()
variable = variable[0:8]
variable_list.append(variable)
result_list.append(row[-1])
decision_tree = tree.DecisionTreeClassifier()
decision_tree = decision_tree.fit(variable_list,result_list)
input_values = [cement, blast_fur_slug, fly_ash, water, superpl, coarse_aggr, fine_aggr, days]
prediction = decision_tree.predict([input_values])
info = "Prediction of future concrete class after "+ str(days)+" days: "+ str(prediction[0])
return info
print(predict_concrete_class(data, 500, 0, 0, 200, 0, 1125, 613, 3))
答案 0 :(得分:1)
如果要检查系统的准确性,则应执行交叉验证。
您必须将数据集分为两部分。第一个用来学习您的系统。然后,您对数据集的第二部分执行预测过程,并将预测结果与良好结果进行比较。使用这种方法,您可以在未经学习的数据集上检查系统。
为了分割您的集合,您应该使用sklearn.model_selection中的train_test_split 您将随机分割您的集合。
这里的演讲很好:https://machinelearningmastery.com/k-fold-cross-validation/
答案 1 :(得分:1)
将您的数据拆分为训练和测试:
var_train, var_test, res_train, res_test = train_test_split(variable_list, result_list, test_size = 0.3)
在火车上训练决策树:
decision_tree = tree.DecisionTreeClassifier()
decision_tree = decision_tree.fit(var_train, res_train)
通过计算测试集的准确性来测试模型性能:
res_pred = decision_tree.predict(var_test)
score = accuracy_score(res_test, res_pred)
或者您可以直接使用decision_tree.score
:
score = decision_tree.score(var_test, res_test)
您得到的错误是因为您试图将variable_list
(这是您的输入要素列表)作为参数传递给accuracy_score
。您应该传递真实标签和预测标签的列表。