我的模型是U-Net实现 -
from keras.layers import Input, merge, Convolution2D, MaxPooling2D,
UpSampling2D
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from keras.models import Model
def seg_score(y_true, y_pred):
smooth = 1.0
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
true_sum = K.sum(y_true_f); pred_sum = K.sum(y_pred_f)
if(true_sum > pred_sum):
max_sum = true_sum
else:
max_sum = pred_sum
return (intersection + smooth) / (max_sum + smooth)
def seg_score_loss(y_true, y_pred):
return -seg_score(y_true, y_pred)
def dice_coef(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def get_unet(num_color_component, dimension):
img_rows = dimension; img_cols = dimension;
inputs = Input((num_color_component, img_rows, img_cols))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
#model.compile(optimizer=Adam(lr=1e-5), loss=seg_score_loss, metrics=[seg_score])
model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model
我收到如下错误 -
追踪(最近一次通话): 文件" /home/zaverichintan/Chintan/PycharmProjects/CNN_wbc_identification/train.py" ;,第60行,在 model = mo.get_unet(num_color_component,filter_size); 文件" /home/zaverichintan/Chintan/PycharmProjects/CNN_wbc_identification/models.py" ;,第63行,在get_unet中 up7 = merge([UpSampling2D(size =(2,2))(conv6),conv3],mode =' concat',concat_axis = 1) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第456行,合并 名称=名称) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第107行, init node_indices,tensor_indices) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第187行,在_arguments_validation中 '图层形状:%s' %(input_shapes)) ValueError:" concat"模式只能合并具有匹配输出形状的图层(concat轴除外)。图层形状:[(无,0,16,256),(无,0,16,128)]
将Concat轴更改为3然后我得到了这个 -
文件" /home/zaverichintan/Chintan/PycharmProjects/CNN_wbc_identification/train.py" ;,第60行,在 model = mo.get_unet(num_color_component,filter_size); 文件" /home/zaverichintan/Chintan/PycharmProjects/CNN_wbc_identification/models.py",第71行,在get_unet中 up8 = keras.layers.merge([UpSampling2D(size =(2,2))(conv7),conv2],mode =' concat',concat_axis = 1) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第456行,合并 名称=名称) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第107行, init node_indices,tensor_indices) 文件" /home/zaverichintan/anaconda2/lib/python2.7/site-packages/keras/legacy/layers.py" ;,第187行,在_arguments_validation中 '图层形状:%s' %(input_shapes)) ValueError:" concat"模式只能合并具有匹配输出形状的图层(concat轴除外)。图层形状:[(无,0,32,128),(无,1,32,64)]
答案 0 :(得分:0)
这很简单:
你有:ValueError:“concat”模式只能合并具有匹配输出形状的图层,但concat轴除外。图层形状:[(无,0,16,256),(无,0,16,128)]
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
他们明确地说形状应该是相同的 除了连续轴
形状不同的尺寸是第3维(一个是256,另一个是128)。所以你应该将concat轴设置为3而不是1.如:
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=3)
我希望这会有所帮助:)
答案 1 :(得分:0)
您必须按此处https://keras.io/backend/设置image_data_format": "channels_first"
或将输入更改为
inputs = Input((img_rows, img_cols, num_color_component))
然后concat_axis
必须与数据格式对应。
以下是如何在Keras中实施U-net的示例:https://github.com/jocicmarko/ultrasound-nerve-segmentation/blob/master/train.py#L34