在paper on domain adaptation之后,我正在尝试在Tensorflow中实现以下用于梯度反转的图层(为Keras写入Theano后端,如此Keras issue中所示),因为我的模型没有运行与Theano合作。
class GradientReversalLayer(Layer):
""" Reverse a gradient
<feedforward> return input x
<backward> return -lambda * delta
"""
def __init__(self, hp_lambda, **kwargs):
super(GradientReversalLayer, self).__init__(**kwargs)
self.hp_lambda = hp_lambda
self.gr_op = ReverseGradient(self.hp_lambda)
def build(self, input_shape):
self.trainable_weights = []
def call(self, x, mask=None):
return self.gr_op(x)
def get_output_shape_for(self, input_shape):
return input_shape
def get_config(self):
config = {"name": self.__class__.__name__,
"lambda": self.hp_lambda}
base_config = super(GradientReversalLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
图层执行此操作:
import theano
from keras.engine import Layer
class ReverseGradient(theano.Op):
""" theano operation to reverse the gradients
Introduced in http://arxiv.org/pdf/1409.7495.pdf
"""
view_map = {0: [0]}
__props__ = ('hp_lambda', )
def __init__(self, hp_lambda):
super(ReverseGradient, self).__init__()
self.hp_lambda = hp_lambda
def make_node(self, x):
assert hasattr(self, '_props'), "Your version of theano is too old to support __props__."
x = theano.tensor.as_tensor_variable(x)
return theano.Apply(self, [x], [x.type()])
def perform(self, node, inputs, output_storage):
xin, = inputs
xout, = output_storage
xout[0] = xin
def grad(self, input, output_gradients):
return [-self.hp_lambda * output_gradients[0]]
def infer_shape(self, node, i0_shapes):
return i0_shapes
如果我使用tf后端运行我的模型并使用Theano编写的此函数,我会收到以下错误:
theano.tensor.var.AsTensorError: ('Cannot convert Tensor("concatenate_1/concat:0", shape=(?, ?, 128), dtype=float32) to TensorType', <class 'tensorflow.python.framework.ops.Tensor'>)
这样称呼后:
lstm_concat = concatenate([hidden_out_1, hidden_out_2])
lstm_concat = FlipGradientKeras.GradientReversalLayer(0.31)(lstm_concat)
有关adding a new operation的文档仅建议在C ++中实现它。
ops codes显示了一般框架,但我想确保我实施Theano op所做的一切。
我认为这将是:
def ReverseGradient(input_tensor, hp_lambda):
with ops.name_scope(name, "ReverseGradient", [input_tensor, hp_lambda]) as name:
input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
但我真的不确定其余部分。
提前致谢!
答案 0 :(得分:2)
我通过扩展已完成的工作here来解决问题。
这是工作代码:
import tensorflow as tf
from keras.engine import Layer
import keras.backend as K
def reverse_gradient(X, hp_lambda):
'''Flips the sign of the incoming gradient during training.'''
try:
reverse_gradient.num_calls += 1
except AttributeError:
reverse_gradient.num_calls = 1
grad_name = "GradientReversal%d" % reverse_gradient.num_calls
@tf.RegisterGradient(grad_name)
def _flip_gradients(op, grad):
return [tf.negative(grad) * hp_lambda]
g = K.get_session().graph
with g.gradient_override_map({'Identity': grad_name}):
y = tf.identity(X)
return y
class GradientReversal(Layer):
'''Flip the sign of gradient during training.'''
def __init__(self, hp_lambda, **kwargs):
super(GradientReversal, self).__init__(**kwargs)
self.supports_masking = False
self.hp_lambda = hp_lambda
def build(self, input_shape):
self.trainable_weights = []
def call(self, x, mask=None):
return reverse_gradient(x, self.hp_lambda)
def get_output_shape_for(self, input_shape):
return input_shape
def get_config(self):
config = {}
base_config = super(GradientReversal, self).get_config()
return dict(list(base_config.items()) + list(config.items()))