我有一个数据框X
。我想将它转换为只有5个元素的1D数组。一种方法是将内部数组转换为列表。我怎么能这样做?
0 1 2 3 4 5 0 1622 95 1717 85.278544 1138.964373 1053.685830 1 62 328 390 75.613900 722.588235 646.974336 2 102 708 810 75.613900 800.916667 725.302767 3 102 862 964 75.613900 725.870370 650.256471 4 129 1380 1509 75.613900 783.711111 708.097211
val = X.values
会给出一个numpy数组。我想将数组的内部元素转换为列表。我怎样才能做到这一点?
我试过这个但是失败了
M = val.values.tolist()
A = np.array(M,dtype=list)
N = np.array(M,dtype=object)
答案 0 :(得分:6)
这是将每行作为一个列表给我们提供1D
列表数组的一种方法 -
In [231]: df
Out[231]:
0 1 2 3 4 5
0 1622 95 1717 85.278544 1138.964373 1053.685830
1 62 328 390 75.613900 722.588235 646.974336
2 102 708 810 75.613900 800.916667 725.302767
3 102 862 964 75.613900 725.870370 650.256471
4 129 1380 1509 75.613900 783.711111 708.097211
In [232]: out = np.empty(df.shape[0], dtype=object)
In [233]: out[:] = df.values.tolist()
In [234]: out
Out[234]:
array([list([1622.0, 95.0, 1717.0, 85.278544, 1138.964373, 1053.6858300000001]),
list([62.0, 328.0, 390.0, 75.6139, 722.5882349999999, 646.974336]),
list([102.0, 708.0, 810.0, 75.6139, 800.916667, 725.302767]),
list([102.0, 862.0, 964.0, 75.6139, 725.87037, 650.256471]),
list([129.0, 1380.0, 1509.0, 75.6139, 783.7111110000001, 708.097211])], dtype=object)
In [235]: out.shape
Out[235]: (5,)
In [236]: out.ndim
Out[236]: 1
答案 1 :(得分:0)
您是否尝试使用df.as_matrix()
然后加入行?
示例:
L=[]
for m in df.as_matrix().tolist():
L += m
答案 2 :(得分:0)
如果只有一列,您可以尝试
op_col = []
for i in df_name['Column_name']:
op_col.append(i)
print(op_col)