Tukey在R中的事后测试返回结果
diff lwr upr p adj
2-1 2.125000e-01 -0.13653578 0.5615358 0.4873403
3-1 2.250000e-01 -0.12403578 0.5740358 0.4219408
4-1 3.875000e-01 0.03846422 0.7365358 0.0206341
5-1 6.875000e-01 0.33846422 1.0365358 0.0000020
6-1 2.250000e-01 -0.12403578 0.5740358 0.4219408
3-2 1.250000e-02 -0.31064434 0.3356443 0.9999974
4-2 1.750000e-01 -0.14814434 0.4981443 0.6147144
5-2 4.750000e-01 0.15185566 0.7981443 0.0006595
6-2 1.250000e-02 -0.31064434 0.3356443 0.9999974
4-3 1.625000e-01 -0.16064434 0.4856443 0.6866539
5-3 4.625000e-01 0.13935566 0.7856443 0.0009888
6-3 1.776357e-15 -0.32314434 0.3231443 1.0000000
5-4 3.000000e-01 -0.02314434 0.6231443 0.0844160
6-4 -1.625000e-01 -0.48564434 0.1606443 0.6866539
6-5 -4.625000e-01 -0.78564434 -0.1393557 0.0009888
这很好,但很难阅读。如果结果可以安排在一个较低的对角线表中,组因子为行和列,那会更好。
像
这样的东西 1 2 3 4 5 6
1
2 p
3 p p
4 p p p
5 p p p p
6 p p p p p
其中p是适当的p值。这可能吗?
答案 0 :(得分:1)
以下是我使用tidyverse
进行手动转换的建议。
我把它作为一个函数包装起来,你可以通过传递p_adj
以外的东西来改变指标。请注意,我假设输入(tbl
)是一个数据框。
transformTable <- function(tbl, metric) {
# Takes table of TurkeyHSD output metrics
# and transforms them into a pairwise comparison matrix.
# tbl is assumed to be a data.frame or tibble,
# var is assumed to be a character string
# giving the variable name of the metric in question
# (here: "diff", "lwr", "upr", or "p_adj")
tbl <- tbl %>%
# Split comparison into individual variables
mutate(
Var1 = as.numeric(substr(X, 1, 1)),
Var2 = as.numeric(substr(X, 3, 3))) %>%
# Only keep relevant fields
select(Var1, Var2, matches(metric)) %>%
# Filter out NA's
filter(!is.na(metric)) %>%
# Make into "wide" format using Var2
spread_(key = 'Var2', value = metric, fill = '')
# Let's change the row names to Var1
row.names(tbl) <- tbl$Var1
# And drop the Var1 column
tbl <- select(tbl, -Var1)
return(tbl)
}
transformTable(df, 'p_adj')
输出:
1 2 3 4 5
2 0.4873403
3 0.4219408 0.9999974
4 0.0206341 0.6147144 0.6866539
5 2e-06 0.0006595 0.0009888 0.084416
6 0.4219408 0.9999974 1 0.6866539 0.0009888
可重复的数据集:
df <- structure(list(X = structure(c(1L, 2L, 4L, 7L, 11L, 3L, 5L, 8L,
12L, 6L, 9L, 13L, 10L, 14L, 15L), .Label = c("2-1", "3-1", "3-2",
"4-1", "4-2", "4-3", "5-1", "5-2", "5-3", "5-4", "6-1", "6-2",
"6-3", "6-4", "6-5"), class = "factor"), diff = c(0.213, 0.225,
0.388, 0.688, 0.225, 0.0125, 0.175, 0.475, 0.0125, 0.163, 0.463,
1.78e-15, 0.3, -0.163, -0.463), lwr = c(-0.13653578, -0.12403578,
0.03846422, 0.33846422, -0.12403578, -0.31064434, -0.14814434,
0.15185566, -0.31064434, -0.16064434, 0.13935566, -0.32314434,
-0.02314434, -0.48564434, -0.78564434), upr = c(0.5615358, 0.5740358,
0.7365358, 1.0365358, 0.5740358, 0.3356443, 0.4981443, 0.7981443,
0.3356443, 0.4856443, 0.7856443, 0.3231443, 0.6231443, 0.1606443,
-0.1393557), p_adj = c(0.4873403, 0.4219408, 0.0206341, 2e-06,
0.4219408, 0.9999974, 0.6147144, 0.0006595, 0.9999974, 0.6866539,
0.0009888, 1, 0.084416, 0.6866539, 0.0009888)), .Names = c("X",
"diff", "lwr", "upr", "p_adj"), class = "data.frame", row.names = c(NA,
-15L))