我想要一个非常友好的a.b_childern.append(b)
函数用于许多类型,包括ToString
。功能是这样的:
std::tuple
第二部分语法错误,如何用c ++ 11模板实现?
并且,如何实现这样的template <typename T>
inline std::string ToString(const T &t) {
std::stringstream ss;
ss << t;
return ss.str();
}
template <typename... Args>
inline std::string ToString(const std::tuple<Args...> &t) {
std::stringstream ss;
for (int i = 0; i < t.size(); i++) {
ss << ToString(std::get<i>(t)) << " ";
}
return ss.str();
}
:
FromString
关于c ++ 11语法的第二部分也是错误的,如何实现呢?
答案 0 :(得分:7)
在C ++ 17中,您可以这样做:
template <typename ... Ts>
std::string ToString(const Ts& ... ts) {
std::stringstream ss;
const char* sep = "";
((static_cast<void>(ss << sep << ts), sep = " "), ...);
return ss.str();
}
template <typename... Args>
std::string ToString(const std::tuple<Args...> &t) {
return std::apply([](const auto&... ts) { return ToString(ts...); }, t);
}
答案 1 :(得分:4)
namespace notstd {
template<std::size_t...Is>
struct index_sequence {};
template<std::size_t N, std::size_t...Is>
struct make_index_sequence:make_index_sequence<N-1,N-1,Is...>{};
template<std::size_t...Is>
struct make_index_sequence<0,Is...>:index_sequence<Is...>{};
#define RETURNS(...) \
noexcept(noexcept(__VA_ARGS__)) \
-> decltype(__VA_ARGS__) \
{ return __VA_ARGS__; }
namespace details {
template<class F, class Tuple, std::size_t...Is>
auto apply( F&& f, Tuple&& tuple, index_sequence<Is...> )
RETURNS( std::forward<F>(f)( std::get<Is>(std::forward<Tuple>(tuple))... ) )
template<class Tuple>
using raw_tuple = typename std::remove_cv<typename std::remove_reference<Tuple>::type>::type;
template<class Tuple>
using tuple_count = std::tuple_size< raw_tuple<Tuple> >;
}
template<class F, class Tuple>
auto apply( F&& f, Tuple&& tuple )
RETURNS(
::notstd::details::apply(
std::forward<F>(f),
std::forward<Tuple>(tuple),
::notstd::make_index_sequence<
::notstd::details::tuple_count<Tuple>::value
>{}
)
)
}
现在这个::notstd::apply
的行为很像C ++ 17 std::apply
。
然后我们通过ToString
ToStream
struct to_stream_t;
template<class...Args>
void ToStream(std::ostream& os, const std::tuple<Args...>& t) {
os << '{';
::notstd::apply( to_stream_t{os}, t );
os << '}';
}
inline void ToStream(std::ostream&) {}
template<class T>
void ToStream(std::ostream& os, const T& t) {
os << t;
}
template<class T0, class... Ts>
void ToStream(std::ostream& os, const T0& t0, const Ts& ... ts) {
ToStream(os, t0);
using discard=int[];
(void)discard{0,((
void(os << ' '), to_stream_t{os}(ts)
),0)...};
}
struct to_stream_t {
std::ostream& os;
template<class...Args>
void operator()(Args const&...args) const {
ToStream(os, args...);
}
};
template<class...Ts>
std::string ToString( Ts const&... ts ) {
std::stringstream ss;
ToStream( ss, ts... );
return ss.str();
}
这也会使递归元组变平。
如果您添加了更多std
或基本类型的手动ToStream
实施,请将放在 to_stream_t
的主体之前,否则递归工作将无法完成。并且通过to_stream_t{os}(t)
代替ToStream(os, t)
进行递归,以便找到正确的重载。
测试代码:
std::tuple<std::string, std::string, int> t("hello", "world", 42);
std::cout << ToString(t, "-", t);
我们可以通过矢量支持来增强:
template<class T, class A>
void ToStream(std::ostream& os, const std::vector<T, A>& v) {
os << '[';
for (auto const& x:v)
{
if (std::addressof(x) != v.data())
os << ',';
to_stream_t{os}(x);
}
os << ']';
}
然后测试所有这些:
std::tuple<std::string, std::string, int> t("hello", "world", 42);
std::cout << ToString(t, "-", t) << "\n";
std::vector< int > v {1,2,3};
std::cout << ToString(v) << "\n";
std::vector< std::tuple<int, int> > v2 {{1,2},{3,4}};
std::cout << ToString(v2) << "\n";
auto t2 = std::tie( v, v2 );
std::cout << ToString(t2) << "\n";
结束输出是:
{hello world 42} - {hello world 42}
[1,2,3]
[{1 2},{3 4}]
{[1,2,3] [{1 2},{3 4}]}
正如所料。
答案 2 :(得分:1)
在C ++ 11中,你可以想要放弃这样做
#include<iostream>
#include<tuple>
#include<utility>
#include<sstream>
template<size_t... I>
struct index_sequence {};
template<size_t N, size_t sz, size_t... I>
struct make_index_sequence_
{
using type = typename make_index_sequence_<N, sz + 1, I..., sz>::type;
};
template<size_t N, size_t... I>
struct make_index_sequence_<N, N, I...>
{
using type = index_sequence<I...>;
};
template<size_t N>
using make_index_sequence = typename make_index_sequence_<N, 0>::type;
template<typename Fn, typename Tuple, size_t... I>
auto apply_(Fn&& fn, Tuple&& tup, index_sequence<I...>) -> decltype(fn(std::get<I>(tup)...))
{
return fn(std::get<I>(tup)...);
}
template<typename Fn, typename Tuple>
auto apply(Fn&& fn, Tuple&& tup) -> decltype(apply_(std::forward<Fn>(fn), std::forward<Tuple>(tup), make_index_sequence<std::tuple_size<typename std::remove_reference<Tuple>::type>::value>{}))
{
return apply_(std::forward<Fn>(fn), std::forward<Tuple>(tup), make_index_sequence<std::tuple_size<typename std::remove_reference<Tuple>::type>::value>{});
}
以上所有内容都是在较新的C ++中重新实现标准库。
template<typename T>
std::string ToString(const T& t)
{
std::stringstream ss;
ss << t;
return ss.str();
}
template<typename T, typename... Ts>
std::string ToString(const T& t, const Ts&... ts)
{
return ToString(t) + ToString(ts...);
}
template<typename... Ts>
std::string ToString(const std::tuple<Ts...>& tup)
{
return apply<std::string (*)(const Ts&...)>(ToString, tup);
}
这些都是真正的逻辑。
让我欣赏一个全新的水平,即语法糖的优秀程度。