我的数据框由个体动物的个体观察组成。每只动物都有一个生日,我想将其与日期向量中最接近的田间季节相关联。
这是一个非常基本的可重复的例子:
ID <- c("a", "b", "c", "d", "a") # individual "a" is measured twice here
birthdate <- as.Date(c("2012-06-12", "2014-06-14", "2015-11-11", "2016-09-30", "2012-06-12"))
df <- data.frame(ID, birthdate)
# This is the date vector
season_enddates <- as.Date(c("2011-11-10", "2012-11-28", "2013-11-29", "2014-11-26", "2015-11-16", "2016-11-22", "2012-06-21", "2013-06-23", "2014-06-25", "2015-06-08", "2016-06-14"))
通过以下代码,我可以了解生日和最近季节的结束日期。
for(i in 1:length(df$birthdate)){
df$birthseason[i] <- which(abs(season_enddates-df$birthdate[i]) == min(abs(season_enddates-df$birthdate[i])))
}
然而,我想要的是实际日期,而不是差异。例如,birthseason的第一个值应该是2012-06-21。
答案 0 :(得分:2)
由于您使用的是您未在示例中包含的变量,因此有点令人困惑。
但我认为这就是你想要的:
for (ii in 1:nrow(df)) df$birthseason[ii] <-as.character(season_enddates[which.min(abs(df$birthdate[ii] - season_enddates))])
或者使用lapply
:
df$birthseason <- unlist(lapply(df$birthdate,function(x) as.character(season_enddates[which.min(abs(x - season_enddates))])))
结果:
> df
ID birthdate birthseason
1 a 2012-06-12 2012-06-21
2 b 2014-06-14 2014-06-25
3 c 2015-11-11 2015-11-16
4 d 2016-09-30 2016-11-22
5 a 2012-06-12 2012-06-21
答案 1 :(得分:2)
您正在寻找哪个season_enddate
最接近birthdate[1]
和birthdate[2]
等。
为了获得数据,我将创建一个实际可重现的例子:
birthdate <- as.Date(c("2012-06-12", "2014-06-14",
"2015-11-11", "2016-09-30",
"2012-06-12"))
season_enddates <- as.Date(c("2011-11-10", "2012-11-28",
"2013-11-29", "2014-11-26",
"2015-11-16", "2016-11-22",
"2012-06-21", "2013-06-23",
"2014-06-25", "2015-06-08",
"2016-06-14"))
基本上我使用你也使用的功能,除了我决定将它分解一下,所以更容易理解你想要做的事情:
new.vector <- rep(0, length(birthdate))
for(i in 1:length(birthdate)){
diffs <- abs(birthdate[i] - season_enddates)
inds <- which.min(diffs)
new.vector[i] <- season_enddates[inds]
}
# new.vector now contains some dates that have been converted to numbers:
as.Date(new.vector, origin = "1970-01-01")
# [1] "2012-06-21" "2014-06-25" "2015-11-16" "2016-11-22"
# [5] "2012-06-21"
答案 2 :(得分:1)
我建议对您的问题进行一些编辑,以便您的示例代码生成重现问题所需的所有变量。请查看并检查我是否了解您的问题。
要解决此问题,我建议您使用which.min
(让您的代码更简单,更快捷),并结合您的season_enddates
向量的子集,如下所示:
for(i in 1:length(younger$HatchCalendarYear)){
df$birthseasonDate[i] <- season_enddates[which.min(abs(season_enddates - df$birthdate[i]))]
}
答案 3 :(得分:1)
这里的所有解决方案基本相同。如果您希望有一个优化的功能为您执行此操作,我就是这样做的:
match_season <- function(x,y){
nx <- length(x)
ind <- numeric(nx)
for(i in seq_len(nx)){
ind[i] <- which.min(abs(x[i] - y))
}
y[ind]
}
然后你就可以做到:
younger$birthseason <- match_season(younger$HatchDate, season_enddates)
看起来更干净,并以正确的Date
格式为您提供所需的输出。
基准:
start <- as.Date("1990-07-01")
end <- as.Date("2017-06-30")
birthdate <- sample(seq(start, end, by = "1 day"), 1000)
season_enddates <- seq(as.Date("1990-12-21"),
as.Date("2017-6-21"),
by = "3 months")
library(rbenchmark)
benchmark(match_season(birthdate, season_enddates),
columns = c("test","elapsed"))
给出100次重复的7.62秒的时间。
答案 4 :(得分:1)
findInterval
很有用。找到每个season_enddates
最近的df$birthdate
:
vec = sort(season_enddates)
int = findInterval(df$birthdate, vec, all.inside = TRUE)
int
#[1] 1 5 8 10 1
我们比较间隔的每个周围日期的距离并选择最小值:
ans = vec[int]
i = abs(df$birthdate - vec[int]) > abs(df$birthdate - vec[int + 1])
ans[i] = vec[int[i] + 1]
ans
#[1] "2012-06-21" "2014-06-25" "2015-11-16" "2016-11-22" "2012-06-21"