VotingClassifier:不同的功能集

时间:2017-07-13 07:51:58

标签: python machine-learning scikit-learn

我有两个不同的功能集(因此,行数相同且标签相同),在我的情况下DataFrames

df1

| A | B | C |
-------------
| 1 | 4 | 2 |
| 1 | 4 | 8 |
| 2 | 1 | 1 |
| 2 | 3 | 0 |
| 3 | 2 | 5 |

df2

| E | F |
---------
| 6 | 1 |
| 1 | 3 |
| 8 | 1 |
| 2 | 8 |
| 5 | 2 |

labels

| labels |
----------
|    5   |
|    5   |
|    1   |
|    7   |
|    3   |

我想用它们训练VotingClassifier。但是拟合步骤仅允许指定单个特征集。目标是将clf1df1clf2df2相匹配。

eclf = VotingClassifier(estimators=[('df1-clf', clf1), ('df2-clf', clf2)], voting='soft')
eclf.fit(...)

我应该如何处理这种情况?有没有简单的解决方案?

2 个答案:

答案 0 :(得分:5)

很容易使自定义函数完成您想要实现的目标。

导入先决条件:

import numpy as np
from sklearn.preprocessing import LabelEncoder

def fit_multiple_estimators(classifiers, X_list, y, sample_weights = None):

    # Convert the labels `y` using LabelEncoder, because the predict method is using index-based pointers
    # which will be converted back to original data later.
    le_ = LabelEncoder()
    le_.fit(y)
    transformed_y = le_.transform(y)

    # Fit all estimators with their respective feature arrays
    estimators_ = [clf.fit(X, y) if sample_weights is None else clf.fit(X, y, sample_weights) for clf, X in zip([clf for _, clf in classifiers], X_list)]

    return estimators_, le_


def predict_from_multiple_estimator(estimators, label_encoder, X_list, weights = None):

    # Predict 'soft' voting with probabilities

    pred1 = np.asarray([clf.predict_proba(X) for clf, X in zip(estimators, X_list)])
    pred2 = np.average(pred1, axis=0, weights=weights)
    pred = np.argmax(pred2, axis=1)

    # Convert integer predictions to original labels:
    return label_encoder.inverse_transform(pred)

逻辑来自VotingClassifier source

现在测试上面的方法。 首先得到一些数据:

from sklearn.datasets import load_iris
data = load_iris()
X = data.data
y = []

#Convert int classes to string labels
for x in data.target:
    if x==0:
        y.append('setosa')
    elif x==1:
        y.append('versicolor')
    else:
        y.append('virginica')

将数据拆分为火车并进行测试:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

将X划分为不同的要素数据:

X_train1, X_train2 = X_train[:,:2], X_train[:,2:]
X_test1, X_test2 = X_test[:,:2], X_test[:,2:]

X_train_list = [X_train1, X_train2]
X_test_list = [X_test1, X_test2]

获取分类器列表:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC

# Make sure the number of estimators here are equal to number of different feature datas
classifiers = [('knn',  KNeighborsClassifier(3)),
    ('svc', SVC(kernel="linear", C=0.025, probability=True))]

使用数据拟合分类器:

fitted_estimators, label_encoder = fit_multiple_estimators(classifiers, X_train_list, y_train)

预测使用测试数据:

y_pred = predict_from_multiple_estimator(fitted_estimators, label_encoder, X_test_list)

获得预测的准确性:

from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))

随意询问是否有任何疑问。

答案 1 :(得分:4)

为了尽可能多地使用sklearn工具,我发现以下方式更具吸引力。

from sklearn.base import TransformerMixin, BaseEstimator
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import VotingClassifier

######################
# custom transformer for sklearn pipeline
class ColumnExtractor(TransformerMixin, BaseEstimator):
    def __init__(self, cols):
        self.cols = cols

    def transform(self, X):
        col_list = []
        for c in self.cols:
            col_list.append(X[:, c:c+1])
        return np.concatenate(col_list, axis=1)

    def fit(self, X, y=None):
        return self

######################
# processing data
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y)

######################
# fit clf1 with df1
pipe1 = Pipeline([
    ('col_extract', ColumnExtractor( cols=range(0,2) )), # selecting features 0 and 1 (df1) to be used with LR (clf1)
    ('clf', LogisticRegression())
    ])

pipe1.fit(X_train, y_train) # sanity check
pipe1.score(X_test,y_test) # sanity check
# output: 0.6842105263157895

######################
# fit clf2 with df2
pipe2 = Pipeline([
    ('col_extract', ColumnExtractor( cols=range(2,4) )), # selecting features 2 and 3 (df2) to be used with SVC (clf2)
    ('clf', SVC(probability=True))
    ])

pipe2.fit(X_train, y_train) # sanity check
pipe2.score(X_test,y_test) # sanity check
# output: 0.9736842105263158

######################
# ensemble/voting classifier where clf1 fitted with df1 and clf2 fitted with df2
eclf = VotingClassifier(estimators=[('df1-clf1', pipe1), ('df2-clf2', pipe2)], voting='soft', weights= [1, 0.5])
eclf.fit(X_train, y_train)
eclf.score(X_test,y_test)
# output: 0.9473684210526315