我想将投票分类器应用于多个管道分类器,并在网格搜索中调整参数。以下最小的例子给我一个错误。我必须这样做吗?
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
p1 = Pipeline([['clf1', RandomForestClassifier()]])
p2 = Pipeline([['clf2', AdaBoostClassifier()]])
p3 = Pipeline([['clf3', VotingClassifier(estimators=(p1, p2))]])
p3.get_params()
错误:
TypeError: cannot convert dictionary update sequence element #0 to a sequence
答案 0 :(得分:4)
当您为VotingClassifier
指定估算工具时,您需要为每个人指定一个名称:
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import VotingClassifier
p1 = Pipeline([['clf1', RandomForestClassifier()]])
p2 = Pipeline([['clf2', AdaBoostClassifier()]])
p3 = Pipeline([['clf3', VotingClassifier(estimators=[("p1",p1), ("p2",p2)])]])
p3.get_params()
这将输出:
{'clf3': VotingClassifier(estimators=[('p1', Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction...SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
n_jobs=1, voting='hard', weights=None),
'clf3__estimators': [('p1',
Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]])),
('p2',
Pipeline(steps=[['clf2', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
'clf3__n_jobs': 1,
'clf3__p1': Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]]),
'clf3__p1__clf1': RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False),
'clf3__p1__clf1__bootstrap': True,
'clf3__p1__clf1__class_weight': None,
'clf3__p1__clf1__criterion': 'gini',
'clf3__p1__clf1__max_depth': None,
'clf3__p1__clf1__max_features': 'auto',
'clf3__p1__clf1__max_leaf_nodes': None,
'clf3__p1__clf1__min_impurity_split': 1e-07,
'clf3__p1__clf1__min_samples_leaf': 1,
'clf3__p1__clf1__min_samples_split': 2,
'clf3__p1__clf1__min_weight_fraction_leaf': 0.0,
'clf3__p1__clf1__n_estimators': 10,
'clf3__p1__clf1__n_jobs': 1,
'clf3__p1__clf1__oob_score': False,
'clf3__p1__clf1__random_state': None,
'clf3__p1__clf1__verbose': 0,
'clf3__p1__clf1__warm_start': False,
'clf3__p1__steps': [['clf1',
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)]],
'clf3__p2': Pipeline(steps=[['clf2', AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]),
'clf3__p2__clf2': AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None),
'clf3__p2__clf2__algorithm': 'SAMME.R',
'clf3__p2__clf2__base_estimator': None,
'clf3__p2__clf2__learning_rate': 1.0,
'clf3__p2__clf2__n_estimators': 50,
'clf3__p2__clf2__random_state': None,
'clf3__p2__steps': [['clf2',
AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]],
'clf3__voting': 'hard',
'clf3__weights': None,
'steps': [['clf3',
VotingClassifier(estimators=[('p1', Pipeline(steps=[['clf1', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction...SAMME.R', base_estimator=None,
learning_rate=1.0, n_estimators=50, random_state=None)]]))],
n_jobs=1, voting='hard', weights=None)]]}