我在网络中添加了TensorBoard可视化,并注意到只有外层变化很多。为什么网络的权重不会发生很大变化?这在叠加直方图中尤为明显。
我的模特
def neural_network_model(inputdata):
"""The blueprint of the network and the tensorboard information
:param inputdata: the placeholder for the inputdata
:returns: the output of the network?
"""
W1 = tf.get_variable("W1", shape=[set.input, nodes_h1],
initializer=tf.contrib.layers.xavier_initializer())
B1 = tf.get_variable("B1", shape=[nodes_h1],
initializer=tf.random_normal_initializer())
layer1 = tf.matmul(inputdata, W1)
layer1_bias = tf.add(layer1, B1)
layer1_act = tf.nn.relu(layer1)
W2 = tf.get_variable("W2", shape=[nodes_h1, nodes_h2],
initializer=tf.contrib.layers.xavier_initializer())
B2 = tf.get_variable("B2", shape=[nodes_h2],
initializer=tf.random_normal_initializer())
layer2 = tf.matmul(layer1_act, W2)
layer2_bias = tf.add(layer2, B2)
layer2_act = tf.nn.relu(layer2)
W3 = tf.get_variable("W3", shape=[nodes_h2, nodes_h3],
initializer=tf.contrib.layers.xavier_initializer())
B3 = tf.get_variable("B3", shape=[nodes_h3],
initializer=tf.random_normal_initializer())
layer3 = tf.matmul(layer2_act, W3)
layer3_bias = tf.add(layer3, B3)
layer3_act = tf.nn.relu(layer3)
WO = tf.get_variable("WO", shape=[nodes_h3, set.output],
initializer=tf.contrib.layers.xavier_initializer())
layerO = tf.matmul(layer3_act, WO)
with tf.name_scope('Layer1'):
tf.summary.histogram("weights", W1)
tf.summary.histogram("layer", layer1)
tf.summary.histogram("bias", layer1_bias)
tf.summary.histogram("activations", layer1_act)
with tf.name_scope('Layer2'):
tf.summary.histogram("weights", W2)
tf.summary.histogram("layer", layer2)
tf.summary.histogram("bias", layer2_bias)
tf.summary.histogram("activations", layer2_act)
with tf.name_scope('Layer3'):
tf.summary.histogram("weights", W3)
tf.summary.histogram("layer", layer3)
tf.summary.histogram("bias", layer3_bias)
tf.summary.histogram("activations", layer3_act)
with tf.name_scope('Output'):
tf.summary.histogram("weights", WO)
tf.summary.histogram("layer", layerO)
return layerO
我对训练过程的理解是,应该调整重量,这在图像中几乎不会发生。然而,损失已经完成。我已经训练了10000个时代的网络,所以我期望整体上有一点变化。特别是我不理解的重量没有变化。
答案 0 :(得分:1)
我的神经网络中的重量直方图遇到了类似的问题。尽管Relu确实处理了隐藏层的消失梯度问题,但您应该检查您的学习速率并确保每个变量的更新不会太小。这可能导致接近零的更新,导致随时间的变化无关紧要。您只需使用以下代码段检查每个图层的渐变:
def replace_none_with_zero(tensor):
return[0 if i==None else i for i in tensor]
with tf.name_scope('Gradients'):
gradient_for_variable_of_interest=replace_none_with_zero(
tf.gradients(loss,[variable_of_interest]))
然后通过调用渐变上的tf.summary.histogram来检查张量板中的渐变。