使用map超过1个深度级别,从csv转换为json

时间:2017-07-10 21:04:39

标签: java json csv hashmap typeconverter

我有一个csv文件,其内容如下:

Fruit, Mango
Fruit, Apple
Car, Audi
Apple, Red
Color, Brown

我想最终以这样的格式转换它:

"hierarchy" : [{
   "label": "Fruit",
   "children" : [ {label: "Mango"}, {label: "Apple", "children": [ {label:"Red"}]}
   ]
},
{
   "label" : "Car",
   "children" : [ {label: "Audi"}
   ]
},
{
   "label" : "Color",
   "children" : [ {label: "Brown"}
   ]
}]

为此,我在地图中插入了值:

StringBuilder sb = new StringBuilder();
String line = br.readLine();
 while (line != null) {
            sb.append(line);
            sb.append("\n");
            line = br.readLine();
        }

String[] contents=(sb.toString().split("\n"));
String[] newContents;

 Map<String, List<String>> myMaps = new LinkedHashMap<String, List<String>>();


for(String s : contents)
{
  newContents= s.split(",");
    if (!myMaps.containsKey(newContents[0])) {
            myMaps.put(newContents[0], new ArrayList<String>());
        }
        myMaps.get(newContents[0]).add(newContents[1]);
}

这基本上将文件转换为父(键)和子(值)形式的映射。然而,我想知道如何处理超过1级深度的情况 - 例如在我给定的csv中?地图会在这种情况下起作用还是有更好的方法?

3 个答案:

答案 0 :(得分:1)

您的JSON结构看起来更像一棵树,可以被视为一个类:

public class Node {
    private String label;
    private List<Node> children; // can also be of type Node[]

    // getters, setters
}

然后层次结构是一个数组或节点列表

列表比数组更受欢迎,因为它在儿童群体中更容易使用

更新: 有关如何使用Node类填充树的完整示例:

public class Node {
    private String label;
    private List<Node> children = new ArrayList<>(); // to avoid checks for null

    public String getLabel() {
        return label;
    }
    public void setLabel(String label) {
        this.label = label;
    }
    public List<Node> getChildren() {
        return children;
    }
    public void setChildren(List<Node> children) {
        this.children = children;
    }
}

class Converter {
    public List<Node> fromCsvFile(String filename) throws IOException {
        Node root = new Node();

        BufferedReader input = new BufferedReader(new FileReader(filename));
        String[] entry;

        String line = input.readLine();
        while (line != null) {
            entry = line.split(",");

            // find or create
            Node node = findByLabel(root, entry[0]);
            if (node == null) {
                // top level
                node = new Node();
                node.setLabel(entry[0]);
                root.getChildren().add(node);
            }

            // add child
            Node child = new Node();
            child.setLabel(entry[1]);
            node.getChildren().add(child);

            // next line
            line = input.readLine();
        }

        return root.getChildren();
    }

    public Node findByLabel(Node node, String label) {
        if (label.equals(node.getLabel())) {
            return node;
        }

        for (Node child : node.getChildren()) {
            // recursion
            Node found = findByLabel(child, label);
            if (found != null) {
                return found;
            }
        }

        return null;
    }
}

注意:您不需要显式Node,并且您可以使用Map<String, Object>,其中值可以包含嵌套映射,或子列表,或者标签的字符串值。但使用明确的类更清晰。

除了树中现有节点的递归查找之外,还可以创建一个独立的平面集合(Map)来加速查找:

class Converter {
    public List<Node> fromCsvFile(String filename) throws IOException {
        Node root = new Node();
        Map<String, Node> existingNodes = new HashMap<>();

        BufferedReader input = new BufferedReader(new FileReader(filename));
        String[] entry;

        String line = input.readLine();
        while (line != null) {
            entry = line.split(",");

            // find or create
            Node node = existingNodes.get(entry[0]);
            if (node == null) {
                // new top level node
                node = new Node();
                node.setLabel(entry[0]);
                root.getChildren().add(node);
                existingNodes.put(entry[0], node);
            }

            // add child
            Node child = new Node();
            child.setLabel(entry[1]);
            node.getChildren().add(child);
            existingNodes.put(entry[1], child);

            // next line
            line = input.readLine();
        }

        return root.getChildren();
    }
}

仅供参考:Full example

答案 1 :(得分:0)

地图很好。只需使用递归函数来编写更深层次。

答案 2 :(得分:0)

试试这个。

String csv = ""
    + "Fruit, Mango\n"
    + "Fruit, Apple\n"
    + "Car, Audi\n"
    + "Apple, Red\n"
    + "Color, Brown\n"
    + "Red, Fire\n";
Set<String> topLevels = new LinkedHashSet<>();
Set<String> notTopLevels = new LinkedHashSet<>();
Map<String, Map<String, Object>> labels = new LinkedHashMap<>();
try (BufferedReader reader = new BufferedReader(new StringReader(csv))) {
    String line;
    while ((line = reader.readLine()) != null) {
        String[] fields = line.split("\\s*,\\s*");
        Map<String, Object> value = labels.computeIfAbsent(
            fields[1], k -> new LinkedHashMap<String, Object>());
        labels.computeIfAbsent(
            fields[0], k -> new LinkedHashMap<String, Object>())
            .put(fields[1], value);
        topLevels.add(fields[0]);
        notTopLevels.add(fields[1]);
    }
}
Map<String, Object> hierarchy = new LinkedHashMap<>();
topLevels.removeAll(notTopLevels);
for (String s : topLevels)
    hierarchy.put(s, labels.get(s));
System.out.println(hierarchy);

结果:

{Fruit={Mango={}, Apple={Red={Fire={}}}}, Car={Audi={}}, Color={Brown={}}}