我正在尝试手动计算列值的分位数,但是与Pandas的结果输出相比,无法使用公式手动找到正确的分位数值。 我四处寻找不同的解决方案,但没有找到正确的答案
In [54]: df
Out[54]:
data1 data2 key1 key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 1.965781 1.246435 a one
In [55]: grouped = df.groupby('key1')
In [56]: grouped['data1'].quantile(0.9)
Out[56]:
key1
a 1.668413
使用公式手动查找,n为3,因为data1列中有3个值
quantile(n+1)
应用df1列的值
=0.9(n+1)
=0.9(4)
= 3.6
所以第3.6位是1.965781,那么大熊猫如何给出1.668413?
答案 0 :(得分:2)
函数quantile
将根据您的数据范围分配百分比。
在你的情况下:
因此,您可以通过以下方式计算第90个百分点(使用第50和第100百分位数之间的线性插值:
>>import numpy as np
>>x =np.array([-0.204708,1.965781,0.478943])
>>ninetieth_percentile = (x[1] - x[2])/0.5*0.4+x[2]
>>ninetieth_percentile
1.6684133999999999
注意值0.5和0.4来自这样的事实:数据的两个点跨越50%的数据,0.4表示高于您希望找到的50%的量(0.5 + 0.4 = 0.9)。希望这是有道理的。