我试图在使用新数据对Keras上的Inception v3 CNN进行微调后,从添加的Dense层中提取特征向量。基本上,我加载网络结构及其权重,添加两个密集层(我的数据用于两类问题)并仅从网络的某些部分更新权重,如下面的代码所示:
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(64, activation='relu')(x)
# and a logistic layer -- I have 2 classes only
predictions = Dense(2, activation='softmax')(x)
# this is the model to train
model = Model(inputs=base_model.input, outputs=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
#load new training data
x_train, x_test, y_train, y_test =load_data(train_data, test_data, train_labels, test_labels)
datagen = ImageDataGenerator()
datagen.fit(x_train)
epochs=1
batch_size=32
# train the model on the new data for a few epochs
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
steps_per_epoch=x_train.shape[0] //
batch_size,
epochs=epochs,
validation_data=(x_test, y_test))
# at this point, the top layers are well trained and
#I can start fine-tuning convolutional layers from inception V3.
#I will freeze the bottom N layers and train the remaining top layers.
#I chose to train the top 2 inception blocks, i.e. I will freeze the
#first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
layer.trainable = False
for layer in model.layers[249:]:
layer.trainable = True
# I need to recompile the model for these modifications to take effect
# I use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['binary_accuracy'])
# I train our model again (this time fine-tuning the top 2 inception blocks alongside the top Dense layers
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
steps_per_epoch=x_train.shape[0] //
batch_size,
epochs=epochs,
validation_data=(x_test, y_test))
此代码运行良好,不是我的问题。
我的问题是,在对这个网络进行微调之后,我想要从列车上的最后一层输出并测试数据,因为我想将这个新网络用作特征提取器。我想要从上面代码中可以看到的网络部分输出:
x = Dense(64, activation='relu')(x)
我尝试了以下代码,但它不起作用:
from keras import backend as K
inputs = [K.learning_phase()] + model.inputs
_convout1_f = K.function(inputs, model.get_layer(dense_1).output)
错误如下
_convout1_f = K.function(inputs, model.get_layer(dense_1).output)
NameError: global name 'dense_1' is not defined
如何在我的新数据中微调预先训练好的网络后,从我添加的新图层中提取特征?我在这里做错了什么?
答案 0 :(得分:1)
我解决了自己的问题。希望它也适合你。
首先,提取特征的K.function是这个
_convout1_f = K.function([model.layers[0].input, K.learning_phase()],[model.layers[312].output])
其中312是我要提取特征的第312层
然后我将这个_convout1_f参数传递给像这样的函数
features_train, features_test=feature_vectors_generator(x_train,x_test,_convout1_f)
提取这些功能的功能就像这样
def feature_vectors_generator(x_train,x_test, _convout1_f):
print('Generating Training Feature Vectors...')
batch_size=100
index=0
if x_train.shape[0]%batch_size==0:
max_iterations=x_train.shape[0]/batch_size
else:
max_iterations=(x_train.shape[0]/batch_size)+1
for i in xrange(0, max_iterations):
if(i==0):
features=_convout1_f([x_train[index:batch_size], 1])[0]
index=index+batch_size
features = numpy.squeeze(features)
features_train = features
else:
if(i==max_iterations-1):
features=_convout1_f([x_train[index:x_train.shape[0],:], 1])[0]
features = numpy.squeeze(features)
features_train =numpy.append(features_train,features, axis=0)
else:
features=_convout1_f([x_train[index:index+batch_size,:], 1])[0]
index=index+batch_size
features = numpy.squeeze(features)
features_train=numpy.append(features_train,features, axis=0)
print('Generating Testing Feature Vectors...')
batch_size=100
index=0
if x_test.shape[0]%batch_size==0:
max_iterations=x_test.shape[0]/batch_size
else:
max_iterations=(x_test.shape[0]/batch_size)+1
for i in xrange(0, max_iterations):
if(i==0):
features=_convout1_f([x_test[index:batch_size], 0])[0]
index=index+batch_size
features = numpy.squeeze(features)
features_test = features
else:
if(i==max_iterations-1):
features=_convout1_f([x_test[index:x_test.shape[0],:], 0])[0]
features = numpy.squeeze(features)
features_test = numpy.append(features_test,features, axis=0)
else:
features=_convout1_f([x_test[index:index+batch_size,:], 0])[0]
index=index+batch_size
features = numpy.squeeze(features)
features_test=numpy.append(features_test,features, axis=0)
return(features_train, features_test)