功能匹配OpenCV

时间:2017-07-02 19:55:04

标签: python-3.x opencv feature-detection image-comparison

我正在使用此代码来匹配两个图像上的功能。输出不准确,有很多正面否定。如何才能提高整体精度? output Main Image

    import numpy as np
    import cv2
    from matplotlib import pyplot as plt
    MIN_MATCH_COUNT = 10
    img1 = cv2.imread("/Users/anastasiya/Desktop/images/all_signs.jpg",0) # queryImage       
    img2 = cv2.imread("/Users/anastasiya/Desktop/images/template3.png",0) # trainImage
    sift = cv2.xfeatures2d.SIFT_create()
    kp1, des1 = sift.detectAndCompute(img1,None)
    kp2, des2 = sift.detectAndCompute(img2,None)
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 50)
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    if len(good)>MIN_MATCH_COUNT:
        src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
        dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
        matchesMask = mask.ravel().tolist()

        h,w = img2.shape
        pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
        dst = cv2.perspectiveTransform(pts,M)

        img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

    else:
        print ("Not enough matches are found" )

        matchesMask = None
        draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                       singlePointColor = None,
                       matchesMask = matchesMask, # draw only inliers
                       flags = 2)

    img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

    plt.imshow(img3, 'gray'),plt.show()
    matches = flann.knnMatch(des1,des2,k=2)
    good = []
    for m,n in matches:
        if m.distance < 0.7*n.distance:
            good.append(m)

    if len(good)>MIN_MATCH_COUNT:
        src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
        dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
        matchesMask = mask.ravel().tolist()

        h,w = img2.shape
        pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
        dst = cv2.perspectiveTransform(pts,M)

        img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

    else:
        print ("Not enough matches are found" )

        matchesMask = None

draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                   singlePointColor = None,
                   matchesMask = matchesMask, # draw only inliers
                   flags = 2)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

plt.imshow(img3, 'gray'),plt.show()

当我获得输出时,我的训练图像(主要图像)非常压缩。是否有可能获得实际尺寸?

0 个答案:

没有答案