Python Negamax算法

时间:2017-07-02 17:52:50

标签: python algorithm numpy negamax

我有一个尽可能简单的negamax算法,用于评估Tic Tac Toe中的位置。游戏的状态存储为numpy中的数组,X的部分用1表示,而O的部分用4表示。

我刚刚测试了这个,发现:

a = np.zeros(9).reshape(3,3)
negaMax(a, 6, 1) # Returned zero as it should
negaMax(a, 7, 1) # Returns 100

这意味着我的算法认为它已经找到了一种方法让X在Tic Tac Toe的游戏中赢得七层,这对于体面的游戏来说显然是不可能的。我无法弄清楚如何打印它找到的最佳动作,所以在调试时遇到了麻烦。我做错了什么?

def winCheck(state):
        """Takes a position, and returns the outcome of that game"""
        # Sums which correspond to a line across a column
        winNums = list(state.sum(axis=0))
        # Sums which correspond to a line across a row
        winNums.extend(list(state.sum(axis=1)))
        # Sums which correspond to a line across the main diagonal
        winNums.append(state.trace())
        # Sums which correspond to a line across the off diagonal
        winNums.append(np.flipud(state).trace())

        if Square.m in winNums:
                return 'X'
        elif (Square.m**2 + Square.m) in winNums:
                return 'O'
        elif np.count_nonzero(state) == Square.m**2:
                return 'D'
        else:
                return None

def moveFind(state):
        """Takes a position as an nparray and determines the legal moves"""
        moveChoices = []

        # Iterate over state, to determine which squares are empty
        it = np.nditer(state, flags=['multi_index'])
        while not it.finished:
            if it[0] == 0:
                    moveChoices.append(it.multi_index)
            it.iternext()
        return moveChoices

def moveSim(state, move, player):
        """Create the state of the player having moved without interfering with the board"""
        simState = state.copy()
        if player == 1:
                simState[move] = 1
        else:
                simState[move] = gamecfg.n + 1
        return simState

def positionScore(state):
        """The game is either won or lost"""
        if winCheck(state) == 'X':
                return 100
        elif winCheck(state) == 'O':
                return -100
        else:
                return 0

def negaMax(state, depth, colour):
        """Recursively find the best move via a negamax search"""
        if depth == 0:
                return positionScore(state) * colour

        highScore = -100

        moveList = moveFind(state)
        for move in moveList:
                score = -negaMax(moveSim(state, move, colour), depth -1, colour * -1)
                highScore = max(score, highScore)

        return highScore

1 个答案:

答案 0 :(得分:2)

当制作一行3个符号时,您的代码不会认为游戏停止。

这意味着它正在玩一个tic-tac-toe的变体,如果O在3行之后即使在3行之后也会获胜。

对于这个变种,程序已经正确地发现X可能总是赢!

(我遇到了同样的情况,我制作了一个国际象棋程序,计算机很乐意牺牲它的国王,如果它稍后会达到将军......)