我最近使用csv数据完成了线性回归模型的训练。
此处显示训练数据的结果:
但是,我仍然对如何使用该模型感到茫然。
我如何给模型一个“x”值,使它返回一个“y”值?
代码:
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
_, cost_value = sess.run([optimizer,cost])
#Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost)
print( "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost)
print ("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
#Plot data after completing training
train_X = []
train_Y = []
for i in range(n_samples): #Your input data size to loop through once
X, Y = sess.run([col1, pred]) # Call pred, to get the prediction with the updated weights
train_X.append(X)
train_Y.append(Y)
#Graphic display
df = pd.read_csv("battdata2.csv", header=None)
X = df[0]
Y = df[1]
plt.plot(train_X, train_Y, linewidth=1.0, label='Predicted data')
plt.plot(X, Y, 'ro', label='Input data')
plt.legend()
plt.show()
print("train_X -- -")
print(train_X)
print("X -- -")
print(X)
print("train_Y -- -")
print(train_Y)
print("Y -- -")
print(Y)
save_path = saver.save(sess, "C://Users//Shiina//model.ckpt",global_step=1000)
print("Model saved in file: %s" % save_path)
coord.request_stop()
coord.join(threads)
链接到ipynb和csv文件here。
答案 0 :(得分:2)
您基本上希望在训练期间使用queue runners
将输入提供给网络,但在推理期间,您希望通过feed_dict
输入输入。这可以通过使用tf.placeholder_with_default()
来完成。因此,当输入未通过feed_dict
提供时,它将从队列中读取,否则从“feed_dict”获取。您的代码应该是:
col1_batch, col2_batch = tf.train.shuffle_batch([col1, col2], ...
# if data is not feed through `feed_dict` it will pull from `col*_batch`
_X = tf.placeholder_with_default(col1_batch, shape=[None], name='X')
_y = tf.placeholder_with_default(col2_batch, shape=[None], name='y')