我正在尝试使用 itertools.permutations()来返回字符串的所有排列,并仅返回属于集合的成员的那些排列字
import itertools
def permutations_in_dict(string, words):
'''
Parameters
----------
string : {str}
words : {set}
Returns
-------
list : {list} of {str}
Example
-------
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
'''
我目前的解决方案在终端上工作正常,但不知何故无法通过测试用例......
return list(set([''.join(p) for p in itertools.permutations(string)]) & words)
任何帮助将不胜感激。
答案 0 :(得分:113)
您解决的问题最好描述为anagram匹配的测试。
traditional solution是对目标字符串进行排序,对候选字符串进行排序,并测试是否相等。
>>> def permutations_in_dict(string, words):
target = sorted(string)
return sorted(word for word in words if sorted(word) == target)
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
另一种方法是使用collections.Counter()进行multiset等式测试。这在算法上优于排序解决方案(O(n)
与O(n log n)
),但除非字符串的大小很大(由于散列所有字符的成本),否则往往会丢失。
>>> def permutations_in_dict(string, words):
target = Counter(string)
return sorted(word for word in words if Counter(word) == target)
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
可以通过将对应于字符串中每个可能字符的素数相乘来构造唯一的anagram签名或perfect hash。
commutative property of multiplication保证哈希值对于单个字符串的任何排列都是不变的。哈希值的唯一性由fundamental theorem of arithmetic(也称为唯一素因子化定理)保证。
>>> from operator import mul
>>> primes = [2, 3, 5, 7, 11]
>>> primes += [p for p in range(13, 1620) if all(pow(b, p-1, p) == 1 for b in (5, 11))]
>>> anagram_hash = lambda s: reduce(mul, (primes[ord(c)] for c in s))
>>> def permutations_in_dict(string, words):
target = anagram_hash(string)
return sorted(word for word in words if anagram_hash(word) == target)
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
当字符串很小时,使用itertools.permutations()搜索目标字符串上的排列是合理的(在 n 长度字符串上生成排列会生成 n 阶乘候选者) 。
好消息是,当 n 很小且字的数量很大时,这种方法运行得非常快(因为集合成员资格测试是O(1)) :
>>> from itertools import permutations
>>> def permutations_in_dict(string, words):
perms = set(map(''.join, permutations(string)))
return sorted(word for word in words if word in perms)
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
正如OP推测的那样,使用set.intersection()可以将纯python搜索循环加速到c-speed:
>>> def permutations_in_dict(string, words):
perms = set(map(''.join, permutations(string)))
return sorted(words & perms)
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['act', 'cat']
哪种解决方案最好取决于字符串的长度和字的长度。计时将显示哪个最适合特定问题。
以下是使用两种不同字符串大小的各种方法的一些比较时序:
Timings with string_size=5 and words_size=1000000
-------------------------------------------------
0.01406 match_sort
0.06827 match_multiset
0.02167 match_perfect_hash
0.00224 match_permutations
0.00013 match_permutations_set
Timings with string_size=20 and words_size=1000000
--------------------------------------------------
2.19771 match_sort
8.38644 match_multiset
4.22723 match_perfect_hash
<takes "forever"> match_permutations
<takes "forever"> match_permutations_set
结果表明,对于小字符串,最快的方法是使用set-intersection搜索目标字符串上的排列。
对于较大的字符串,最快的方法是传统的排序和比较解决方案。
希望你发现这个小算法研究和我一样有趣。外卖是:
FWIW,这是我用来运行比较时间的测试设置:
from collections import Counter
from itertools import permutations
from string import letters
from random import choice
from operator import mul
from time import time
def match_sort(string, words):
target = sorted(string)
return sorted(word for word in words if sorted(word) == target)
def match_multiset(string, words):
target = Counter(string)
return sorted(word for word in words if Counter(word) == target)
primes = [2, 3, 5, 7, 11]
primes += [p for p in range(13, 1620) if all(pow(b, p-1, p) == 1 for b in (5, 11))]
anagram_hash = lambda s: reduce(mul, (primes[ord(c)] for c in s))
def match_perfect_hash(string, words):
target = anagram_hash(string)
return sorted(word for word in words if anagram_hash(word) == target)
def match_permutations(string, words):
perms = set(map(''.join, permutations(string)))
return sorted(word for word in words if word in perms)
def match_permutations_set(string, words):
perms = set(map(''.join, permutations(string)))
return sorted(words & perms)
string_size = 5
words_size = 1000000
population = letters[: string_size+2]
words = set()
for i in range(words_size):
word = ''.join([choice(population) for i in range(string_size)])
words.add(word)
string = word # Arbitrarily search use the last word as the target
print 'Timings with string_size=%d and words_size=%d' % (string_size, words_size)
for func in (match_sort, match_multiset, match_perfect_hash, match_permutations, match_permutations_set):
start = time()
func(string, words)
end = time()
print '%-10.5f %s' % (end - start, func.__name__)
答案 1 :(得分:12)
您只需使用collections.Counter()
即可将words
与string
进行比较,而无需创建所有permutations
(这会随着字符串的长度而爆炸):
from collections import Counter
def permutations_in_dict(string, words):
c = Counter(string)
return [w for w in words if c == Counter(w)]
>>> permutations_in_dict('act', {'cat', 'rat', 'dog', 'act'})
['cat', 'act']
注意:set
是无序的,因此如果您需要特定订单,则可能需要对结果进行排序,例如: return sorted(...)
答案 2 :(得分:3)
显然你期望输出按字母顺序排序,所以这应该做:
return sorted(set(''.join(p) for p in itertools.permutations(string)) & words)
答案 3 :(得分:1)
试试这个解决方案
list(map("".join, itertools.permutations('act')))
['act', 'atc', 'cat', 'cta', 'tac', 'tca']
我们可以称之为listA
listA = list(map("".join, itertools.permutations('act')))
您的清单是ListB
listB = ['cat', 'rat', 'dog', 'act']
然后使用set intersection
list(set(listA) & set(listB))
['cat', 'act']
答案 4 :(得分:-1)
为什么甚至打扰排列?如果你把单词看作字母词典,这是一个更简单的问题。我确信理解能比这更好,但是:
letters = dict()
for i in word:
letters[i] = letters.get(i, 0) + 1
对于单词然后对集合中的每个单词执行此操作,请确保每个键的值大于或等于该单词的键的值。如果是,请将其添加到您的输出中。
添加了奖励:如果您的单词列表非常长,这应该很容易并行化。
答案 5 :(得分:-1)
只是匹配字母组
set_string = set(string)
return [w for w in words if set(w) == set_string]
以下是最高答案(Python 3.6)的时间安排
0.06000 match_multiset
0.02201 match_perfect_hash
0.00900 match_sort
0.00600 comprehension <-- This answer
0.00098 match_permutations
0.00000 match_permutations_set