我正在制作文档分类器,这是我的代码:
import os
import io
import numpy
from pandas import DataFrame
from sklearn.feature_extraction.text import CountVectorizer,
TfidfTransformer, TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
def readFiles(path):
for root, dirnames, filenames in os.walk(path):
for filename in filenames:
path = os.path.join(root, filename)
inBody = False
lines = []
f = io.open(path, 'r', encoding='latin1')
for line in f:
if inBody:
lines.append(line)
elif line == '\n':
inBody = True
f.close()
message = '\n'.join(lines)
yield path, message
def dataFrameFromDirectory(path, classification):
rows = []
index = []
for filename, message in readFiles(path):
rows.append({'resume': message, 'class': classification})
index.append(filename)
return DataFrame(rows, index=index)
data = DataFrame({'resume': [], 'class': []})
data = data.append(dataFrameFromDirectory(r'<path>', 'Yes'))
data = data.append(dataFrameFromDirectory(r'<path>', 'No'))
然后我分割数据,并使用Tfidf Vectorizer:
tf=TfidfVectorizer(min_df=1, stop_words='english')
data_traintf=tf.fit_transform(data_train)
mnb=MultinomialNB()
mnb.fit(data_traintf,class_train)
经过培训和测试,我将分类器保存为pickle文件:
import pickle
with open(r'clf.pkl','wb') as f:
pickle.dump(mnb,f)
但是当我再次加载并尝试使用分类器时,我得到TfidfVectorizer - Vocabulary wasn't fitted
错误。所以我尝试使用管道并保存了我的矢量图:
from sklearn.pipeline import Pipeline
classifier=Pipeline([('tfidf',tf),('multiNB',mnb)])
with open(r'clf_1.pkl','wb') as f:
pickle.dump(classifier,f)
但我仍然得到同样的错误。可能出现什么问题?
编辑:pickle文件已成功存储,另一端我加载了文件:
import pickle
with open(r'clf_1.pkl','rb') as f:
clf=pickle.load(f)
并创建了一个测试数据框。当我执行test_tf=tf.fit(test['resume'])
时,它可以正常工作,但pred=clf.predict(test_tf)
会给出错误TypeError: 'TfidfVectorizer' object is not iterable
我是否需要遍历包含大约15个对象的数据框?