我正在尝试使用scikit-learn / pandas构建情绪分析器。构建和评估模型有效,但尝试对新样本文本进行分类则不然。
我的代码:
import csv
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
infile = 'Sentiment_Analysis_Dataset.csv'
data = "SentimentText"
labels = "Sentiment"
class Classifier():
def __init__(self):
self.train_set, self.test_set = self.load_data()
self.counts, self.test_counts = self.vectorize()
self.classifier = self.train_model()
def load_data(self):
df = pd.read_csv(infile, header=0, error_bad_lines=False)
train_set, test_set = train_test_split(df, test_size=.3)
return train_set, test_set
def train_model(self):
classifier = BernoulliNB()
targets = self.train_set[labels]
classifier.fit(self.counts, targets)
return classifier
def vectorize(self):
vectorizer = TfidfVectorizer(min_df=5,
max_df = 0.8,
sublinear_tf=True,
ngram_range = (1,2),
use_idf=True)
counts = vectorizer.fit_transform(self.train_set[data])
test_counts = vectorizer.transform(self.test_set[data])
return counts, test_counts
def evaluate(self):
test_counts,test_set = self.test_counts, self.test_set
predictions = self.classifier.predict(test_counts)
print (classification_report(test_set[labels], predictions))
print ("The accuracy score is {:.2%}".format(accuracy_score(test_set[labels], predictions)))
def classify(self, input):
input_text = input
input_vectorizer = TfidfVectorizer(min_df=5,
max_df = 0.8,
sublinear_tf=True,
ngram_range = (1,2),
use_idf=True)
input_counts = input_vectorizer.transform(input_text)
predictions = self.classifier.predict(input_counts)
print(predictions)
myModel = Classifier()
text = ['I like this I feel good about it', 'give me 5 dollars']
myModel.classify(text)
myModel.evaluate()
错误:
Traceback (most recent call last):
File "sentiment.py", line 74, in <module>
myModel.classify(text)
File "sentiment.py", line 66, in classify
input_counts = input_vectorizer.transform(input_text)
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 1380, in transform
X = super(TfidfVectorizer, self).transform(raw_documents)
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 890, in transform
self._check_vocabulary()
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 278, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/utils/validation.py", line 690, in check_is_fitted
raise _NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.exceptions.NotFittedError: TfidfVectorizer - Vocabulary wasn't fitted.
我不确定问题是什么。在我的分类方法中,我创建了一个全新的矢量化器来处理我想要分类的文本,与用于从模型创建训练和测试数据的矢量化器分开。
谢谢
答案 0 :(得分:6)
您已经安装了矢量图,但是您将其丢弃,因为它在vectorize
函数的生命周期内不存在。相反,请在vectorize
转换后将其保存在self._vectorizer = vectorizer
中:
classify
然后在您的input_counts = self._vectorizer.transform(input_text)
功能中,不要创建新的矢量图。相反,请使用您符合培训数据的那个:
private func setResultsToEqualData(result: String, Torrentprovider: TorrentProviders) -> torrentProviderItem? {
var TorrentProviderItem = [torrentProviderItem]()
var xmlTorrent: XMLIndexer!
xmlTorrent = SWXMLHash.parse(result)
switch Torrentprovider {
case .ExtraTorrent:
var tempExtraTorrentItem: [ExtraTorrentItem]
do {
tempExtraTorrentItem = try xmlTorrent["rss"]["channel"]["item"].value()
for item in tempExtraTorrentItem {
TorrentProviderItem.append(item.result())
}
} catch {
print("FOUT in torrent!!")
return nil
}
case .Torrentz2:
var tempTorrentz2Item: [Torrentz2Item]
do {
tempTorrentz2Item = try xmlTorrent["rss"]["channel"]["item"].value()
for item in tempTorrentz2Item {
TorrentProviderItem.append(item.result())
}
} catch {
print("FOUT in torrent!!")
return nil
}
}
return (selectBestResult(results: TorrentProviderItem))
}
答案 1 :(得分:3)
您可以同时保存模型和矢量化器,并在以后使用它们:这是我的操作方式:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.svm import LinearSVC
import pickle
# Train the classification model
def train_model():
df = pd.read_json('intent_data.json')
X_train, X_test, y_train, y_test = train_test_split(df['Utterance'], df['Intent'], random_state=0)
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(X_train)
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
model = LinearSVC().fit(X_train_tfidf, y_train)
# Save the vectorizer
vec_file = 'vectorizer.pickle'
pickle.dump(count_vect, open(vec_file, 'wb'))
# Save the model
mod_file = 'classification.model'
pickle.dump(model, open(mod_file, 'wb'))
# Load the classification model from disk and use for predictions
def classify_utterance(utt):
# load the vectorizer
loaded_vectorizer = pickle.load(open('vectorizer.pickle', 'rb'))
# load the model
loaded_model = pickle.load(open('classification.model', 'rb'))
# make a prediction
print(loaded_model.predict(loaded_vectorizer.transform([utt])))
答案 2 :(得分:0)
将vectorizer
另存为pickle
或joblib
文件,并在需要预测时加载。
pickle.dump(vectorizer, open("vectorizer.pickle", "wb")) //Save vectorizer
pickle.load(open("models/vectorizer.pickle", 'rb')) // Load vectorizer