我正在研究RecursiveTask计算Fibonacci数的经典例子。我添加了一些输出:请参阅http://jboston.net/2017/FibonacciOutp.txt,代码位于
之下仍然无法理解这是如何工作的,为什么我们首先看到所有数字从12减少然后重复多次
number = 2 fcal1.join()= 1 fcal2.compute()= 0
number = 3 fcal1.join()= 1 fcal2.compute()= 1
代码:
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
public class RecursiveTaskDemo {
public static void main(String[] args) {
FibonacciCal fibonacciCal = new FibonacciCal(12);
ForkJoinPool pool = new ForkJoinPool();
int i = pool.invoke(fibonacciCal);
System.out.println(i);
}
}
class FibonacciCal extends RecursiveTask<Integer> {
private static final long serialVersionUID = 1L;
final int num;
FibonacciCal(int num) {
this.num = num;
}
@Override
protected Integer compute() {
if (num <= 1) {
return num;
}
System.out.println("number=" + num);
FibonacciCal fcal1 = new FibonacciCal(num - 1);
fcal1.fork();
FibonacciCal fcal2 = new FibonacciCal(num - 2);
int fcal1Join = fcal1.join();
int fcal2Compute = fcal2.compute();
System.out.println("number=" + num + " fcal1.join()=" + fcal1Join + " fcal2.compute()=" + fcal2Compute);
return fcal2Compute + fcal1Join;
}
}
答案 0 :(得分:2)
当调用FibonacciCal::compute
时,它会分离一个线程来计算fib(n - 1)
并在起始线程中计算fib(n - 2)
。分支看起来有点像这样(fib(n)
表示运行FibonacciCal(n).compute()
的线程):
STARTING WITH pool.invoke(new FibonacciCal(5)):
fib(5)
A BIT LATER:
fib(5) === fib(3) // The fibcal2.compute() call, printing num = 3
\== fib(4) // The fibcal1.fork() call, printing num = 4
LATER:
fib(5) === fib(3) === fib(1) // These fib(0/1)s are base cases and will start folding the tree back up
| \== fib(2) === fib(0) // Will return 1 and not fork
| \== fib(1) // Will return 1 and not fork
\== fib(4) === fib(2) === fib(0)
| \== fib(1)
\== fib(3) === fib(1)
\== fib(2) === fib(0)
\== fib(1)
METHODS START RETURNING:
fib(5) === fib(3) === 1
| \== fib(2) === 1
| \== 1
\== fib(4) === fib(2) === 1
| \== 1
\== fib(3) === 1
\== fib(2) === 1
\== 1
ADDITIONS START HAPPENING:
fib(5) === fib(3) === 1
| \== (1 + 1) = 2 // When a thread joins its child, it prints out its number again.
| // Since the tree is now folding instead of unfolding, the printlns appear, approximately, the opposite order
\== fib(4) === (1 + 1) = 2
\== fib(3) === 1
\== (1 + 1) = 2
LATER:
fib(5) === (1 + 2) = 3 === 1
| \== 2
\== fib(4) === 2
\== (1 + 2) = 3 === 1
\== 2
END:
8 === 3 === 1
| \== 2
\== 5 === 2
\== 3 === 1
\== 2
你得到很多重复数字的原因是因为没有任何记忆。在这个包含fib(5)
的示例中,您会看到fib(0)
或fib(1)
有8个基本术语,fib(2)
有3个术语,fib(3)
有2个,{1}} {1}}。随着低阶条款开始加入他们的孩子,你会得到很多小fib(4)
秒的printlns,直到结束,他们开始重新计算。