我正在尝试调整维基百科中的代码:
https://en.wikipedia.org/wiki/Change-making_problem#Implementation
还输出使用的硬币列表,而不仅仅是使用的硬币数量。也就是说,例如:
change_making([6, 8, 12], 52)
输出5
这是正确的(12+12+12+8+8 = 52
)。
问题是我想以这种格式[12, 12, 12, 8, 8]
而不仅仅是5
获得输出,我不知道该怎么做。
有问题的代码:
def _get_change_making_matrix(set_of_coins, r):
m = [[0 for _ in range(r + 1)] for _ in range(len(set_of_coins) + 1)]
for i in range(r + 1):
m[0][i] = i
return m
def change_making(coins, n):
"""This function assumes that all coins are available infinitely.
n is the number that we need to obtain with the fewest number of coins.
coins is a list or tuple with the available denominations."""
m = _get_change_making_matrix(coins, n)
for c in range(1, len(coins) + 1):
for r in range(1, n + 1):
# Just use the coin coins[c - 1].
if coins[c - 1] == r:
m[c][r] = 1
# coins[c - 1] cannot be included.
# We use the previous solution for making r,
# excluding coins[c - 1].
elif coins[c - 1] > r:
m[c][r] = m[c - 1][r]
# We can use coins[c - 1].
# We need to decide which one of the following solutions is the best:
# 1. Using the previous solution for making r (without using coins[c - 1]).
# 2. Using the previous solution for making r - coins[c - 1] (without using coins[c - 1]) plus this 1 extra coin.
else:
m[c][r] = min(m[c - 1][r], 1 + m[c][r - coins[c - 1]])
return m[-1][-1]
非常感谢任何帮助/建议。
-------------编辑-------------
解决方案(删除了评论):
def _change_making(coins, n):
m = [[0 for _ in range(n + 1)] for _ in range(len(coins) + 1)]
for i in range(n + 1):
m[0][i] = i
for c in range(1, len(coins) + 1):
for r in range(1, n + 1):
if coins[c - 1] == r:
m[c][r] = 1
elif coins[c - 1] > r:
m[c][r] = m[c - 1][r]
else:
m[c][r] = min(m[c - 1][r], 1 + m[c][r - coins[c - 1]])
i = len(coins)
j = n
ret = {k: 0 for k in coins}
while j != 0:
if m[i][j - coins[i - 1]] == m[i][j] - 1:
ret[coins[i - 1]] += 1
j = j - coins[i - 1]
else:
i = i - 1
return ret
要找到最近的 *解决方案:
def change_making(coins, n):
try:
return _generate_packing(coins, n)
except:
return generate_packing(coins, n + 1)
例如change_making([2, 5], 8)
{2: 2, 5: 1}
因为9是最接近的解决方案。
答案 0 :(得分:1)
以下是您可以采取的步骤 -
1)从i=len(coins)
和j=n
开始,即数组的末尾(或列表)m
2)现在我们知道如果coins(i-1)
仅使用一枚硬币而不是m[i][j]
,则会选择价值为m[i][j-coins[i-1]]
的硬币。
3)如果没有发生这种情况,我们会检查其他硬币(列表中较低指数的硬币)是否符合相同条件。
示例 -
一开始我们有52值,我们已经用你的功能解决了它需要5个硬币。
我们只使用12的第一枚硬币,如果价值40(即52 -12)我们需要4个硬币,同样适用于第2和第3个12值硬币。
但是我们无法使用第四个12硬币作为值4(即16-12)无法使用1个硬币实现。
以下是执行相同操作的代码段(您可以在函数末尾使用而不是使用return语句) -
i=len(coins)
j = n
while(j!=0):
if m[i][j-coins[i-1]] == m[i][j]-1:
print(coins[i-1])
j=j-coins[i-1]
else:
i=i-1