我将此数据框作为示例
ISO Product Billed Week Created Week Billings
0 DE Table 201705 201703 0
1 AT Table 201708 201707 0
我需要做的是用['ISO','产品']为每个组填写一些缺少0个Billings的数据,其中序列中断,即在某个星期没有创建账单所以它是失踪。它需要基于“开单周”和“最短创建周”的最大值。即这是应该完成但没有按顺序中断的组合。
因此,对于上述内容,我需要以编程方式附加到数据库中的缺失记录如下所示:
var app = angular.module('app', []);
app.controller('viewCtrl', function($scope, $http) {
var url = "https://";
$http({
method: "GET",
url: url,
headers: {
"accept": "application/json;odata=verbose"
}
}).success(function(data, status, headers, config) {
$scope.contacts = data.d.results;
console.log($scope.contacts);
}).error(function(data, status, headers, config) {});
});
app.controller('addItemsController', function($scope, $http) {
var url = "https://";
$scope.addContact = function() {
return $http({
headers: {
"Accept": "application/json; odata=verbose",
"X-RequestDigest": jQuery("#__REQUESTDIGEST").val()
},
method: "POST",
url: url,
data: {
'Lastname': $scope.Lastname,
'Firstname': $scope.Firstname
}
})
.then(saveContact)
.catch(function(message) {
console.log("addContact() error: " + message);
});
function saveContact(data, status, headers, config) {
alert("Item Added Successfully");
return data.data.d;
}
}
//console.log("an item has been added!");
});
app.controller('editItemsController', function($scope) {
$scope.editItem = function() {
console.log("an item can now be edited!");
}
});
app.controller('deleteItemsController', function($scope) {
$scope.deleteItem = function() {
console.log("item has been deleted");
}
});
答案 0 :(得分:3)
这是我的解决方案。我相信一些天才将提供更好的解决方案〜让我们等待它〜
df1=df.groupby('ISO').agg({'Billed Week' : np.max,'Created Week' : np.min})
df1['ISO']=df1.index
Created Week Billed Week ISO
ISO
AT 201704 201708 AT
DE 201701 201705 DE
ISO=[]
BilledWeek=[]
CreateWeek=[]
for i in range(len(df1)):
BilledWeek.extend([df1.ix[i,1]]*(df1.ix[i,1]-df1.ix[i,0]+1))
CreateWeek.extend(list(range(df1.ix[i,0],df1.ix[i,1]+1)))
ISO.extend([df1.ix[i,2]]*(df1.ix[i,1]-df1.ix[i,0]+1))
DF=pd.DataFrame({'BilledWeek':BilledWeek,'CreateWeek':CreateWeek,'ISO':ISO})
Target=DF.merge(df,left_on=['BilledWeek','CreateWeek','ISO'],right_on=['Billed Week','Created Week','ISO'],how='left')
Target.Billings.fillna(0,inplace=True)
Target=Target.drop(['Billed Week', 'Created Week'],axis=1)
Target['Product']=Target.groupby('ISO')['Product'].ffill()
Out[75]:
BilledWeek CreateWeek ISO Product Billings
0 201708 201704 AT Table 1000.0
1 201708 201705 AT Table 1000.0
2 201708 201706 AT Table 1000.0
3 201708 201707 AT Table 0.0
4 201708 201708 AT Table 1000.0
5 201705 201701 DE Table 1000.0
6 201705 201702 DE Table 1000.0
7 201705 201703 DE Table 0.0
8 201705 201704 DE Table 1000.0
9 201705 201705 DE Table 1000.0