样本数据
A B C D E
1 2016 94.49433733 2 81.28
5 2016 95.38104534 4 139.6944
7 2016 95.43885385 1 69.11
8 2016 94.91936704 1 7.23
9 2016 95.21859776 3 152.31
10 2016 95.15797535 1 86.32
11 2016 95.1830432 2 38.24
13 2016 94.01256633 2 33.3
给定样本数据并使用R,我想构建一个序列,让我从预测变量( C )中获得增量影响。
预期表格(增加0.5):
C ANSWER
85
85.05
85.1
85.15
85.2
85.25
85.3
85.35
我希望了解C中的每个delta变化(增加),D会发生什么?
以下是我尝试使用转换和应用
的内容transform(df, volumen=unlist(tapply(C, D, function(x) c(0, diff(x)))))
答案 0 :(得分:0)
fit <- lm(D ~ C, data = my_sample_data) #Fits a linear model
my_sequence <- seq(from = 85, to = 85.35, by = 0.05 ) # first column
result <- fit$coefficients[1] + my_sequence * fit$coefficients[2] #2nd column
df <- data.frame(C = my_sequence, ANSWER = result) #Makes a table