我创建了如下模型(与theano后端的keras)。当我在我的CPU上运行它时,它给了我内存错误。我有8GB DDR3内存,在调用model1.fit之前我的内存消耗为2.3 GB。此外,我可以使用高达7.5GB的RAM,程序崩溃。我也试过在GPU(Nvedia GeForce GTX 860M)4GB上运行但仍然出现内存错误。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\demo_suite>deviceQuery.exe
deviceQuery.exe Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 970"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 5.2
Total amount of global memory: 4096 MBytes (4294967296 bytes)
(13) Multiprocessors, (128) CUDA Cores/MP: 1664 CUDA Cores
GPU Max Clock rate: 1266 MHz (1.27 GHz)
Memory Clock rate: 3505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 1835008 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 970
Result = PASS
当我尝试打印model.summary()时的输出是
def get_model_convolutional():
model = keras.models.Sequential()
model.add(Conv2D(128, (3, 3), activation='relu', strides = (1,1), input_shape=(1028, 1028, 3)))
model.add(Conv2D(3, (3, 3), strides = (1,1), activation=None))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
return model
if __name__ == "__main__":
model1 = get_model_convolutional()
train_x = np.ones((108, 1208, 1208, 3), dtype=np.uint8)
train_y = np.ones((108, 1204, 1204, 3), dtype = np.uint8)
model1.fit(x_train, y_train, verbose = 2,epochs=20, batch_size=4)
为什么需要这么多内存?我试图计算,但我认为应该需要大约1.5GB的内存。这是我的第一个模特。