尝试在Keras中创建CNN模型以创建去噪自动编码器时出错。我的Keras后端是TensorFlow。
我的输入数据是一个numpy数组。 numpy数组取自灰度图像。我使用sklearn train_test_split拆分它。我已调整数据大小并在输出层出错。
/opt/anaconda/anaconda3/lib/python3.6/site-
packages/keras/engine/training.py in _standardize_input_data(data,
names, shapes, check_batch_axis, exception_prefix)
151 ' to have shape ' + str(shapes[i]) +
152 ' but got array with shape ' +
--> 153 str(array.shape))
154 return arrays
155
ValueError: Error when checking target: expected conv2d_transpose_36
to have shape (None, 279, 559, 1) but got array with shape (129, 258,
540, 1)
train_images = os.listdir('data/train')
test_images = os.listdir('data/test')
clean_images = os.listdir('data/train_cleaned')
def set_common_size(img_link, std_size = (258, 540)):
'''Function will take in the argument of a link to an image and return the image
with the standard size.'''
img = Image.open(img_link)
img = image.img_to_array(img)
img = np.resize(img, std_size)
return img / 255
train_data = []
test_data = []
cleaned_data = []
for img in train_images:
img_file = set_common_size('data/train/' + img)
train_data.append(img_file)
for img in test_images:
img_file = set_common_size('data/test/' + img)
test_data.append(img_file)
for img in clean_images:
img_file = set_common_size('data/train_cleaned/' + img)
cleaned_data.append(img_file)
train_data = np.asarray(train_data)
test_data = np.asarray(test_data)
cleaned_data = np.asarray(cleaned_data)
x_train, x_test, y_train, y_test = train_test_split(train_data, cleaned_data, test_size=0.1, random_state=42)
input_shape = x_train[0].shape
input_layer = Input(input_shape)
#Layer 1
layer1 = Conv2D(64, 3, activation='relu', padding='same')(input_layer)
layer1 = MaxPooling2D(2)(layer1)
#Layer 2
layer2 = Conv2D(128, 3, activation='relu', padding='same')(layer1)
layer2 = MaxPooling2D(2)(layer2)
#Layer 3
layer3 = Conv2D(256, 3, activation='relu', padding='same')(layer2)
layer3 = MaxPooling2D(2)(layer3)
#Bottleneck
encoded = layer3
#Layer1
uplayer1 = UpSampling2D(2)(layer3)
uplayer1 = Conv2DTranspose(256, 2, activation='relu')(uplayer1)
#Layer2
uplayer2 = UpSampling2D(2)(uplayer1)
uplayer2 = Conv2DTranspose(128, 5, activation='relu')(uplayer2)
#Layer3
uplayer3 = UpSampling2D(2)(uplayer2)
uplayer3 = Conv2DTranspose(64, 10, activation='relu')(uplayer3)
output = Conv2DTranspose(1, 3, activation='sigmoid')(uplayer3)
model = Model(input=input_layer, output=output)
print(model.summary())
model.compile(optimizer='adadelta', loss='binary_crossentropy')
model.fit(
x_train, y_train,
epochs=100,
shuffle=True,
validation_data=(x_test, y_test)
)
以下是模型摘要结果:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 258, 540, 1) 0
_________________________________________________________________
conv2d_60 (Conv2D) (None, 258, 540, 64) 640
_________________________________________________________________
max_pooling2d_37 (MaxPooling (None, 129, 270, 64) 0
_________________________________________________________________
conv2d_61 (Conv2D) (None, 129, 270, 128) 73856
_________________________________________________________________
max_pooling2d_38 (MaxPooling (None, 64, 135, 128) 0
_________________________________________________________________
conv2d_62 (Conv2D) (None, 64, 135, 256) 295168
_________________________________________________________________
max_pooling2d_39 (MaxPooling (None, 32, 67, 256) 0
_________________________________________________________________
up_sampling2d_37 (UpSampling (None, 64, 134, 256) 0
_________________________________________________________________
conv2d_transpose_29 (Conv2DT (None, 65, 135, 256) 262400
_________________________________________________________________
up_sampling2d_38 (UpSampling (None, 130, 270, 256) 0
_________________________________________________________________
conv2d_transpose_30 (Conv2DT (None, 134, 274, 128) 819328
_________________________________________________________________
up_sampling2d_39 (UpSampling (None, 268, 548, 128) 0
___________________________________________________________
_________________________________________________________________
conv2d_transpose_32 (Conv2DT (None, 279, 559, 1) 577
=============================================================______
conv2d_transpose_31 (Conv2DT (None, 277, 557, 64) 819264====
Trainable params: 2,271,233
Non- params: 0
答案 0 :(得分:0)
之间存在不匹配:
conv2d_transpose_32 (Conv2DT (None, 279, 559, 1)
中,它实际上是最后一层,但是你的控制台输出看起来有些混乱)和
y_train
中条目的形状)使用模型摘要查看偏离预期形状的位置,并使用正确的padding
值来获得预期的输出形状。