我正在捕获OnPreviewFrame()中的帧,然后在一个线程中处理它们以检查它们是否有效。
public void onPreviewFrame(byte[] data, Camera camera) {
if (imageFormat == ImageFormat.NV21) {
//We only accept the NV21(YUV420) format.
frameCount++;
if (frameCount > 19 && frameCount % 2 == 0) {
Camera.Parameters parameters = camera.getParameters();
FrameModel fModel = new FrameModel(data);
fModel.setPreviewWidth(parameters.getPreviewSize().width);
fModel.setPreviewHeight(parameters.getPreviewSize().height);
fModel.setPicFormat(parameters.getPreviewFormat());
fModel.setFrameCount(frameCount);
validateFrame(fModel);
}
}
}
在validateFrame()中,我将一个ValidatorThread可运行实例提交给具有4个核心和最大线程的ThreadPoolExecutor,以并行处理这些帧。
public class ValidatorThread implements Runnable {
private FrameModel frame;
public ValidatorThread(FrameModel fModel) {
frame = fModel;
}
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
processNV21Data();
}
private void processNV21Data() {
YuvImage yuv = new YuvImage(frame.getData(), frame.getPicFormat(),
frame.getPreviewWidth(), frame.getPreviewHeight(), null);
frame.releaseData();
ByteArrayOutputStream out = new ByteArrayOutputStream();
yuv.compressToJpeg(new Rect(0, 0, frame.getPreviewWidth(), frame.getPreviewHeight()), 100, out);
byte[] bytes = out.toByteArray();
yuv = null;
try {
if (out != null)
out.close();
out = null;
} catch (IOException e) {
e.printStackTrace();
}
Bitmap baseBitmap = BitmapFactory.decodeByteArray(bytes, 0, bytes.length);
bytes = null;
// rotate bitmap
baseBitmap = rotateImage(baseBitmap, frame.getRotation());
//create copy of original bitmap to use later
Bitmap mCheckedBitmap = baseBitmap.copy(Bitmap.Config.ARGB_8888, true);
// convert base bitmap to greyscale for validation
baseBitmap = toGrayscale(baseBitmap);
boolean isBitmapValid = Util.isBitmapValid(baseBitmap);
if (isBitmapValid) {
baseBitmap.recycle();
mCheckedBitmap.recycle();
frame = null;
} else {
baseBitmap.recycle();
mCheckedBitmap.recycle();
frame = null;
}
}
public Bitmap toGrayscale(Bitmap bmpOriginal) {
int width, height;
height = bmpOriginal.getHeight();
width = bmpOriginal.getWidth();
Bitmap bmpGrayscale = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
Canvas c = new Canvas(bmpGrayscale);
Paint paint = new Paint();
bmpOriginal.recycle();
return bmpGrayscale;
}
private Bitmap rotateImage(final Bitmap source, float angle) {
Matrix matrix = new Matrix();
matrix.postRotate(angle);
Bitmap rotatedBitmap = Bitmap.createBitmap(source, 0, 0, source.getWidth(), source.getHeight(), matrix, true);
source.recycle();
return rotatedBitmap;
}
}
FrameModel类有这样的声明:
public class FrameModel {
private byte[] data;
private int previewWidth;
private int previewHeight;
private int picFormat;
private int frameCount;
public void releaseData() {
data = null;
}
// getters and setters
}
处理多个帧时出现OutOf Memory错误。
任何人都可以帮助代码所需的内存优化吗?
答案 0 :(得分:0)
如果从YUV数据生成灰度位图而不通过Jpeg,则可以减少内存使用量。这也会明显加快。
public Bitmap yuv2grayscale(byte[] yuv, int width, int height) {
int[] pixels = new int[width * height];
for (int i = 0; i < height*width; i++) {
int y = yuv[i] & 0xff;
pixels[i] = 0xFF000000 | y << 16 | y << 16 | y;
}
return Bitmap.createBitmap(pixels, width, height, Bitmap.Config.RGB_565);
}
或者,您可以创建RGB_565
位图,而无需通过int[width*height]
像素数组,并使用NDK操作位图像素。