我正在尝试让pandas从下面的结构化csv中选择“ClosePrice”下的行范围,并将其存储在数据帧中。该文件有许多标识符,但我只想通过下面列表中的标识符来浏览该文件。行数也并不总是相同。
list = ['ABC0123', 'DEF0123']
> Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
> "Date" 20170101 "Identifier" ABC0123
> "OpenPrice" 500 "Currency" USD
> "ClosePrice" 550 "foo" bar
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> "Date" 20170101 "Identifier" SOMEOTHER
> ...
> ...
> ...
> "Date" 20170101 "Identifier" DEF0123
> "OpenPrice" 600 "Currency" USD
> "ClosePrice" 650 "foo" bar
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
> foo foo foo foo foo foo foo
我使用for-i-loop获取了我感兴趣的每个表的第一行,并且:
df.iloc[df[df['Column 4'].isin(list)].index + 3,:]
以“foo”值进入左上角的单元格并选择整行,但我想弄清楚如何选择起点下面的行并在下一行之前停止
"Date" 20170101 "Identifier" SOMEOTHER
我正在考虑的一种方法是检查第5列中最后一行下的单元格值的len,这将是= 0,但我无法使用脚本重现此逻辑。其他方法非常受欢迎。
答案 0 :(得分:1)
首先不要使用list
作为变量,因为masking内置函数。
创建帮助列g
,以区分具有cumsum
唯一编号的所有组。然后获取包含L
值的所有组,并按另一个isin
选择所有行:
L = ['ABC0123', 'DEF0123']
df['g'] = df['Column 1'].eq('Date').cumsum()
vals = df.loc[df['Column 4'].isin(L), 'g']
df = df[df['g'].isin(vals)]
print (df)
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 g
0 Date 20170101 Identifier ABC0123 NaN NaN NaN 1
1 OpenPrice 500 Currency USD NaN NaN NaN 1
2 ClosePrice 550 foo bar NaN NaN NaN 1
3 foo foo foo foo foo foo foo 1
4 foo foo foo foo foo foo foo 1
5 foo foo foo foo foo foo foo 1
9 Date 20170101 Identifier DEF0123 NaN NaN NaN 3
10 OpenPrice 600 Currency USD NaN NaN NaN 3
11 ClosePrice 650 foo bar NaN NaN NaN 3
12 foo foo foo foo foo foo foo 3
13 foo foo foo foo foo foo foo 3
如有必要,请删除g
列:
df = df.drop('g', axis=1)
使用index
的类似解决方案:
L = ['ABC0123', 'DEF0123']
df.index = df['Column 1'].eq('Date').cumsum()
vals = df.index[df['Column 4'].isin(L)]
df = df.loc[vals].reset_index(drop=True)
print (df)
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
0 Date 20170101 Identifier ABC0123 NaN NaN NaN
1 OpenPrice 500 Currency USD NaN NaN NaN
2 ClosePrice 550 foo bar NaN NaN NaN
3 foo foo foo foo foo foo foo
4 foo foo foo foo foo foo foo
5 foo foo foo foo foo foo foo
6 Date 20170101 Identifier DEF0123 NaN NaN NaN
7 OpenPrice 600 Currency USD NaN NaN NaN
8 ClosePrice 650 foo bar NaN NaN NaN
9 foo foo foo foo foo foo foo
10 foo foo foo foo foo foo foo
编辑:
L1 = ['Date','OpenPrice','ClosePrice']
L = ['ABC0123', 'DEF0123']
#if necessary filter rows by L1
df = df[df['Column 1'].isin(L1)]
df['g'] = df['Column 1'].eq('Date').cumsum()
vals = df.loc[df['Column 4'].isin(L), 'g']
df = df[df['g'].isin(vals)]
print (df)
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 g
0 Date 20170101 Identifier ABC0123 NaN NaN NaN 1
1 OpenPrice 500 Currency USD NaN NaN NaN 1
2 ClosePrice 550 foo bar NaN NaN NaN 1
9 Date 20170101 Identifier DEF0123 NaN NaN NaN 3
10 OpenPrice 600 Currency USD NaN NaN NaN 3
11 ClosePrice 650 foo bar NaN NaN NaN 3
对于小组工作,可以groupby
与flexible apply
def f(x):
print (x)
#some another code
return x
df1 = df.groupby('g').apply(f)
print (df1)
编辑:
https://github.com/sokhasen/ViewerPDF.git使用真实数据:
L1 = ["Date", "OpenPrice", "ClosePrice"]
g = 1
for i in list:
df['g'] = df['Column 4'].isin(list).cumsum()
vals = df.loc[df['Column 4'].isin(list), 'g']
df = df[df['g'].isin(vals)]
dfFinal = df.loc[(dfLux['g'] == g) & ~df['Column 1'].isin(L1)]
g=g+1